scholarly journals PLC Based Multi Starter Control using Single Control System for Induction Motor

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2515-2521

Most customarily used motor in the industries are induction motor due to its low cost, robustness and less maintenance. The change in the existing framework is necessary in order to make the motor more efficient one. This paper cast enlightenment about the PLC based 3 phase multi-starter control induction motor with energy efficient single control system. In order to start the engine's operation by its own power, starters are used. Various starters are available to initiate the 3-phase induction motor namely Direct On-line, Star-delta, autotransformer and rotor impedance. The employment of this PLC based techniques helps to increase the energy efficiency of the motor .The employability of PLC in this system is to help in the growth of automation. The hardware and software results of the multi starter control using single control systems are analysed

Author(s):  
Viktor Marus ◽  
Aleksandr Pugachev

The simulation results of 4 kW induction motor electric drive with scalar control system and different control topologies are presented. The perspective directions of further investigations on improving energy efficiency of electric drives with scalar control systems are highlighted.


2005 ◽  
Vol 33 (4) ◽  
pp. 339-348 ◽  
Author(s):  
P. Brunn ◽  
A. W. Labib

The paper describes the design, development, testing and use of a microcontroller- and PC-based control system which was used to repair and enhance an ASEA IRB6 welding robot in the authors' laboratory. The principles described could be applied to any robot of similar age and to provide a low-cost route to revitalise any working robot hardware that is limited by an outdated control system. The proposed approach addresses a problem within many manufacturing systems operating in industry.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042085
Author(s):  
T S Titova ◽  
A M Evstaf’ev ◽  
A A Pugachev

Abstract The review of technical solutions and schematic characteristics of auxiliary drives for traction vehicles has shown that the most rational variant is an electric drive with an induction machine. Given the operating modes of the auxiliary drives and the share of their power consumption in the total locomotive power, the task of using scalar control systems for induction machines becomes relevant. Based on a mathematical model describing the dynamic energy conversion processes in the T-shape substitution circuit of an induction motor, taking into account stator steel losses and current displacement effects in the rotor winding and saturation along the main magnetic path, possibilities for reducing stator current have been investigated. In order to improve the energy efficiency of electric drives two variants of control system have been proposed. One based on search method of self-tuning to the stator current minimum and the other - on maintaining the power factor of induction motor at the level that ensures equality of active and reactive components of stator current. The hardware and software requirements for implementing control systems have been analysed. Modelling using Matlab has shown that both control systems work - power loss reduction can be as low as 50% and as high as 60% in certain modes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eric Kwame Simpeh ◽  
Jon-Patrick George Pillay ◽  
Ruben Ndihokubwayo ◽  
Dorothy Julian Nalumu

PurposeHeating, ventilation and air-conditioning (HVAC) systems account for approximately half of all energy usage in the operational phase of a building's lifecycle. The disproportionate amount of energy usage in HVAC systems against other utilities within buildings has proved a huge cause for alarm, as this practice contributes significantly to global warming and climate change. This paper reviews the status and current trends of energy consumption associated with HVAC systems with the aim of interrogating energy efficiency practices for improving HVAC systems' consumption in buildings in the context of developing countries.Design/methodology/approachThe study relied predominantly on secondary data by analysing the relevant body of literature and proposing conceptual insights regarding best practices for improving the energy efficiency of HVAC systems in buildings. The systematic review of the literature (SLR) was aided by the PRISMA guiding principle. Content analysis technique was adopted to examine germane scholarly articles and finally grouped them into themes.FindingsBased on the SLR, measures for enhancing the energy efficiency of HVAC systems in buildings were classified based on economic considerations ranging from low-cost measures such as the cost of tuning the system, installing zonal control systems, adopting building integrated greenery systems and passive solar designs to major approaches such as HVAC smart technologies for energy management which have multi-year pay-back periods. Further, it was established that practices to improve energy efficiency in buildings range from integrated greening system into buildings to HVAC system which are human-centred and controlled to meet human modalities.Practical implicationsThere is a need to incorporate these energy efficiency practices into building regulations or codes so that built environment professionals would have a framework within which to design their buildings to be energy efficient. This energy efficient solution may serve as a prerequisite for newly constructed buildings.Originality/valueTo this end, the authors develop an integrated optimization conceptual framework mimicking energy efficiency options that may complement HVAC systems operations in buildings.


Author(s):  
Wenshao Bu ◽  
Fei Zhang ◽  
Youpeng Chen ◽  
Xiaofeng Zhang

As for the inverse decoupling control system of a bearingless induction motor (BL-IM), in order to eliminate the influence of rotor resistance variation on its control performance, on the basis of the reactive power calculation of torque system, a novel fuzzy model reference adaptive (MRAS) identification method of rotor resistance is proposed. The reference model and adjustable model of instantaneous reactive power are derived in detail. In order to improve the identification performance of rotor resistance, a fuzzy PI adaptive law based on popov super stability theory is constructed. On this basis, a rotor resistance identifier is constructed, and it is used to on-line correct the rotor resistance parameter in the inverse system mathematical model of a BL-IM system. Based on the inverse decoupling control system of a BL-IM, the simulation experimental analysis and verification are carried out. The simulation experimental results have shown that when the proposed identification method of rotor resistance is used, not only the identification- and tracking-speed of rotor resistance can be effectively improved, but also the identification accuracy of rotor resistance can be improved; as for the BL-IM system, after the rotor resistance parameter is on-line corrected, not only the inverse dynamic decoupling control performance can be effectively improved, but also the robustness of BL-IM system to the variation of rotor resistance parameters can be improved.


2020 ◽  
Vol 9 (5) ◽  
pp. 81
Author(s):  
Zhaosen Zhang ◽  
Yan Gao ◽  
Chen Ye

PLC control system has a very wide range of applications in today’s electrical automation equipment, because it has the characteristics of good stability, strong environmental adaptability, low cost and diversified program editing according to actual needs, making it automatic The efficiency of control has been greatly improved. Based on the current development of electrical equipment automation in China, this paper analyzes the effects and characteristics of PLC used in automation control systems from many aspects. It studies the selection and application of PLC in the operation of electrical equipment, and proposes to improve production efficiency. Some feasible measures.


Author(s):  
James Foody ◽  
Karl Maxwell ◽  
Guangbo Hao ◽  
Xianwen Kong

Emerging commercialised anthropomorphic hand prostheses have two main categories: expensive ones with remarkable functionality afforded by complex control systems, and inherently inexpensive ones with basic gripper-like aptitudes that do not fully fulfil the basic physical and emotional requirements of upper-limb amputees or individuals with upper limb congenital defects. This paper aims to establish a middle ground between these two commercial alternatives by realizing a low-cost and highly functional robotic hand. All five digits of the proposed robotic hand are controlled by a single DC motor. This desirable feature is afforded by the implementation of under-actuation. The under-actuation in the fingers is achieved through four-bar linkages coupling with cartwheel flexure joints, which leads to not only shape adaptation, i.e., the ability to naturally adapt to the form of the article being grasped without the aid of intricate control systems, but also low cost due to the possibility of monolithic fabrication (e.g. 3D printing) and ease of control. The under-actuation in the palm system is implemented via the use of a differential pulley mechanism embedded thereof, which furthermore results in low cost by reducing the number of actuators and simplifying the control system. A simple and easy-to-use control system based on voice commands through a smart phone was also developed. It is envisaged that the proposed design can also be applied in various engineering environments to meet adaptability/under-actuation needs.


2011 ◽  
Vol 5 (4) ◽  
pp. 493-501 ◽  
Author(s):  
Takahiro Kosaki ◽  
◽  
Manabu Sano

The nonlinear pressure observer this paper presents for pneumatic systems and observer-based approaches for controlling position and stiffness eliminate the need for pressure and force sensors. The observer estimates pressure in the pneumatic actuator chamber, acting instead of a sensor in a pressure-feedbackbased system. Conventional single-loop controllers are inadequate for pneumatic actuators because such actuators have high nonlinearities such as air compressibility and friction. Most advanced controllers providing better performance require full-state feedback, and using sensors to acquire data makes pneumatic control systems less cost-competitive than electric control systems. Combining our proposed pressure observer with other observers enables a position and stiffness control system to be designed for a two degree-of-freedom pneumatic manipulator. Force caused in contact between the manipulator and an external object can be obtained without using force sensors. Experimental results show that our observerbased approach reduces cost, enables high estimation performance, and ensures high control accuracy.


Sign in / Sign up

Export Citation Format

Share Document