scholarly journals High Quality Color Image Compression for Discrete Transform Domain Downward Conversion Block Based Image Coding

2019 ◽  
Vol 8 (4) ◽  
pp. 1927-1932

Text and image data are important elements for information processing almost in all the computer applications. Uncompressed image or text data require high transmission bandwidth and significant storage capacity. Designing and compression scheme is more critical with the recent growth of computer applications. Among the various spatial domain image compression techniques, multi-level Block partition Coding (MLBTC) is one of the best methods which has the least computational complexity. The parameters such as Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are measured and it is found that the implemented methods of BTC are superior to the traditional BTC. This paves the way for a nearly error free and compressed transmission of the images through the communication channel.

1998 ◽  
Vol 120 (3) ◽  
pp. 463-470 ◽  
Author(s):  
Douglas P. Hart

With the development of Holographic PIV (HPIV) and PIV Cinematography (PIVC), the need for a computationally efficient algorithm capable of processing images at video rates has emerged. This paper presents one such algorithm, sparse array image correlation. This algorithm is based on the sparse format of image data—a format well suited to the storage of highly segmented images. It utilizes an image compression scheme that retains pixel values in high intensity gradient areas eliminating low information background regions. The remaining pixels are stored in sparse format along with their relative locations encoded into 32 bit words. The result is a highly reduced image data set that retains the original correlation information of the image. Compression ratios of 30:1 using this method are typical. As a result, far fewer memory calls and data entry comparisons are required to accurately determine tracer particle movement. In addition, by utilizing an error correlation function, pixel comparisons are made through single integer calculations eliminating time consuming multiplication and floating point arithmetic. Thus, this algorithm typically results in much higher correlation speeds and lower memory requirements than spectral and image shifting correlation algorithms. This paper describes the methodology of sparse array correlation as well as the speed, accuracy, and limitations of this unique algorithm. While the study presented here focuses on the process of correlating images stored in sparse format, the details of an image compression algorithm based on intensity gradient thresholding is presented and its effect on image correlation is discussed to elucidate the limitations and applicability of compression based PIV processing.


2013 ◽  
Vol 303-306 ◽  
pp. 2122-2125
Author(s):  
Peng Fei Xu ◽  
Hong Bin Zhang ◽  
Xin Feng Wang ◽  
Zheng Yong Yu

This paper looks at the application of Singular Value Decomposition (SVD) to color image compression. Based on the basic principle and characteristics of SVD, combined with the image of the matrix structure. A block SVD-based image compression scheme is demonstrated and the usage feasibility of Block SVD-based image compression is proved.


2021 ◽  
Vol 17 (14) ◽  
pp. 135-153
Author(s):  
Haval Tariq Sadeeq ◽  
Thamer Hassan Hameed ◽  
Abdo Sulaiman Abdi ◽  
Ayman Nashwan Abdulfatah

Computer images consist of huge data and thus require more memory space. The compressed image requires less memory space and less transmission time. Imaging and video coding technology in recent years has evolved steadily. However, the image data growth rate is far above the compression ratio growth, Considering image and video acquisition system popularization. It is generally accepted, in particular that further improvement of coding efficiency within the conventional hybrid coding system is increasingly challenged. A new and exciting image compression solution is also offered by the deep convolution neural network (CNN), which in recent years has resumed the neural network and achieved significant success both in artificial intelligent fields and in signal processing. In this paper we include a systematic, detailed and current analysis of image compression techniques based on the neural network. Images are applied to the evolution and growth of compression methods based on the neural networks. In particular, the end-to-end frames based on neural networks are reviewed, revealing fascinating explorations of frameworks/standards for next-generation image coding. The most important studies are highlighted and future trends even envisaged in relation to image coding topics using neural networks.


Author(s):  
K. Sowmithri

Image coding is considered to be more effective, as it reduces number of bits required to store and/or to transmit image data. Transform based image coders play a significant role as they decorrelate the spatial low level information. It is found utilization in International compression standards such as JPEG, JPEG 2000, MPEG and H264. The choice of transform is an important issue in all these transforms coding schemes. Most of the literature suggests either Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT). In this proposed work, the energy preservation of DCT coefficients is analysed, and to down sample these coefficients, lifting scheme is iteratively applied so as to compensate the artifacts that appear in the reconstructed picture, and to yield the higher compression ratio. This is followed by scalar quantization and entropy coding, as in JPEG. The performance of the proposed iterative lifting scheme, employed on decorrelated DCT coefficients is measured with standard Peak Signal to Noise Ratio (PSNR) and the results are encouraging.


Sign in / Sign up

Export Citation Format

Share Document