scholarly journals Improvement of FER using Differential Space-Time Block Code

2020 ◽  
Vol 8 (5) ◽  
pp. 4144-4148

Over recent years, various modulation and coding techniques have been proposed in MIMO wireless communication systems. A MIMO system uses the concept of spatial diversity which is very successful and promising technique. When a coherent transmission system is considered, the estimation of radio channel impulse response is done precisely. In MIMO systems, the radio channel is estimated among every transmitting and receiving antennas such that the complexity can be increased. For this reason, in MIMO systems differential modulation schemes are estimated. A Differential Space-Time Block Code (DSTBC) is useful in the Raleigh fading channel as they do not require channel estimates. Space-time coding with MIMO antennas at transmitting and receiving reduces the consequences of fading in multiple paths and therefore the performance of digital transmission throughout wireless radio channel can be improved. So it has been presumed that perfect CSI is available at the receiver and coherent detection is employed. This paper presents improvement of Frame Error Rate (FER) for differential space-time block code using various Doppler spectra. When the channels estimates are not available the DSTBC system noticed that at SNR of 10 dB, for two transmitting and four receiving antennas the FER is 0.0067 for rounded Doppler spectrum. The differential schemes attains full transmit diversity owing to orthogonal designs. However, the receiver or the transmitter needs the channel state information so these differential schemes are 3 dB worse than the STBC with coherent detection.

Author(s):  
Hardip K. Shah ◽  
Tejal N. Parmar ◽  
Nikhil Kothari ◽  
K. S. Dasgupta

Multipath fading is inherent in wireless communication systems. Diversity is the technique which takes advantage of multipath to mitigate the effect of fading and increase signal strength. Space Time Block codes (STBC) are used in MIMO systems to improve the performance by maximizing transmit and/or receive diversity. Among different schemes based on STBC, Quasi Orthogonal Space Time Block Code (QOSTBC) is able to achieve full rate transmission for more than two transmit antennas. Constellation Rotation QOSTBC (CR-QOSTBC) achieves full diversity and improves performance further along with full rate, to overcome the limitation of QOSTBC, which is unable to maintain orthogonality amongst the codes transmitted by different antennas. Higher diversity can be achieved by increasing uncorrelated paths between transmitter and receivers using higher number of receive antennas. This paper examines improvement in BER with reference to a number of receive antennas. Simulations were carried out under ideal as well as realistic environments, using least square technique with four antennas at transmitter side and variable receive antennas. Results of simulations presented in this paper indicate performance improvement of CR-QOSTBC over QOSTBC in flat fading channel environment. Simulation results also show performance degradation in BER when channel is estimated at the receiver.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitin Tejram Deotale

Purpose To enhance the performance transmit antenna selection (TAS) of spatial modulation (SM), systems technique needs to be essential. This TAS is an effective technique for reducing the multiple input multiple output (MIMO) systems computational difficulty, and bit error rate (BER) can increase remarkably by various TAS algorithms. But these selection methods cannot provide code gain, so it is essential to join the TAS with external code to obtain cy -ode gain advantages in BER. Design/methodology/approach In this paper, Bose–Chaudhuri–Hocquenghem (BCH)-Turbo code TC is combined with the orthogonal space time block code system. Findings In some existing work, the improved BER has been perceived by joining forward error correction code and space time block code (STBC) for MIMO systems provided greater code gain. The proposed work can provide increasing code gain and the effective advantages of the TAS-OSTBC system. Originality/value To perform the system analysis, Rayleigh channel is used. In the case with multiple TAS-OSTBC systems, better performance can provide by this new joint of the BCH-Turbo compared to the conventional Turbo code for the Rayleigh fading.


Sign in / Sign up

Export Citation Format

Share Document