scholarly journals Seismic Vulnerability of Multi-Storey Buildings with Masonry Walls

2020 ◽  
Vol 8 (5) ◽  
pp. 4320-4323

In the seismic codes, lateral rigidity and strength of infill panels are ignored in the design. However recent earthquakes occurred in the world has shown that infill walls change the dynamic behavior of the frame. In this article we propose to investigate the effect of infill wall on the seismic behavior of framed concrete buildings. For this purpose, a framed reinforced concrete building is considered. An equivalent diagonal strut model is used for masonry infill. The strut properties are calculated according to the FEMA306 [7]. Nonlinear pushover analysis is used to assess the seismic behavior. The results show that introduction of the masonry infill wall in the analysis modifies the behavior of bare frame. There is a drastic change in the bending moments and shear forces. The modeling of infill wall transforms the rigid frame into braced frame.

2015 ◽  
Vol 724 ◽  
pp. 353-357
Author(s):  
Jian Zhu ◽  
Ping Tan ◽  
Pei Ju Chang

This study focus on derivation of such vulnerability curves using Fiber Reinforced Polymers technologies retrofitted conventional RC industrial frames with masonry infill wall. A set of stochastic earthquake waves which compatible with the response spectrum of China seismic code are created. Dynamic time history analysis is used to compute the random sample of structures. Stochastic damage scatter diagrams based different seismic intensity index are obtained. Seismic vulnerability of FRP-reinforced RC industrial frames is lower than unreinforced frames obviously, and seismic capability of frames using FRP technologies is enhanced especially under major earthquake.


2016 ◽  
Vol 847 ◽  
pp. 492-504
Author(s):  
Marco Vailati ◽  
Giorgio Monti ◽  
Giorgia di Gangi

Infill panels and partitions are widely used non-structural elements in reinforced concrete buildings, characterized by a significant seismic vulnerability as testified by disastrous collapses observed during recent earthquakes, for both in-plane and out-of-plane actions. The most advanced building codes foresee mandatory verifications of these elements, both when designing a new building and when assessing the seismic adequacy of an existing one. Moreover, recent evaluations have shown that, after low-intensity earthquakes, damage of non-structural parts strongly influences repair costs for typical multi-storey buildings. In this paper, an innovative concept for infill panels and partitions is presented, in which (either concrete or clay) blocks are connected, rather than with the usual mortar layers, by means of recycled-plastic joints. A comparison is also carried out with respect to conventional infill typologies, by evaluating their performance in terms of energy efficiency and acoustic. A brief description of seismic performances of innovative infill panels are shown at the end of work.


Sign in / Sign up

Export Citation Format

Share Document