scholarly journals Microstrip Patch Antenna Design for Early Breast Cancer Detection

2020 ◽  
Vol 8 (6) ◽  
pp. 2698-2705

Breast cancer is one of the leading causes of death among women all over the world. It is the abnormal growth of breast tissues in multistage process. As the stage increases, the chances of treatment and probability of survival of patient decreases. Hence, early detection and diagnosis of breast cancer is must. Microwave imaging technique for early detection of breast cancer is a promising technique to detect tumor and it also have several advantages over other existing techniques for breast cancer detection, such as Breast Self-Examination (BSE), Clinical Breast Examination (CBE), Breast Ultrasound, Computerized Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Mammography and other breast screening methods. One of them is non-ionizing radiations. Other advantages include portability, inexpensive system and safe for human body. Microwave imaging employs microstrip patch antenna as its integral part, for transmitting and receiving microwaves. Microstrip patch antenna as name suggests is a low weight, smaller size antenna. Depending upon substrate material, microstrip patch antennas can be categorized as flexible and non-flexible antennas. Flexible microstrip patch antennas, mostly consisting of textile materials are becoming the preferred choice for most of the researchers. This paper presents recent trends in microstrip patch antenna design for early breast cancer detection and a comparison among them in terms of substrate, feeding techniques, Specific Absorption Rate (SAR), E and H field, Return Loss, Voltage Standing Wave Ratio (VSWR) and some other parameters.

2015 ◽  
Vol 195 ◽  
pp. 2905-2911 ◽  
Author(s):  
Rabia Çalışkan ◽  
S. Sinan Gültekin ◽  
Dilek Uzer ◽  
Özgür Dündar

2021 ◽  
pp. 177-189
Author(s):  
Sourav Sinha ◽  
Sajidur Rahman ◽  
Mahajabin Haque Mili ◽  
Fahim Mahmud

2018 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Suroj Burlakoti ◽  
Prakash Rai

In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.


2015 ◽  
Vol 8 (6) ◽  
pp. 915-919 ◽  
Author(s):  
Neeraj Rao ◽  
Dinesh Kumar Vishwakarma

This is the first report on novel mushroom-type electromagnetic band gap (EBG) structures, consisting of fractal periodic elements, used for enhancing the gain of microstrip patch antennas. Using CST Microwave studio the performance of rectangular patch antenna has been examined on proposed fractal EBG substrates. It is found that fractal EBGs are more effective in suppressing surface wave thus resulting in higher gain. The gain of rectangular patch has been improved from 6.88 to 10.67 dBi. The proposed fractal EBG will open new avenues for the design and development of variety of high-frequency components and devices with enhanced performance.


2007 ◽  
Vol 1 (2) ◽  
pp. 277 ◽  
Author(s):  
R. Nilavalan ◽  
I.J. Craddock ◽  
A. Preece ◽  
J. Leendertz ◽  
R. Benjamin

Author(s):  
Ali Daliri ◽  
Chun H. Wang ◽  
Sabu John ◽  
Amir Galehdar ◽  
Wayne S. T. Rowe ◽  
...  

In this paper, a new design for microstrip patch antenna strain sensors is proposed. The new antenna sensor works based on the meandered microstrip patch antennas. It is threefold more sensitive than previously proposed circular microstrip patch antenna strain sensors. Also, the overall physical dimension of the new antenna sensor is reduced by the factor of five. The current sensor is able to detect strain in all directions. In order to design the antenna sensor, two available commercial FEM software packages ANSYS™ and HFSS™ are used. Both experimental and FEM results corroborate the multidirectional feature of the new antenna sensor. Also, the effect of the hole size in the structure (for coaxial connection to the antenna) on the antenna performance has been studied. Based on the results obtained, the antenna sensor can be recommended for use in structural health monitoring for strain-based damage detection in aerospace structures.


Sign in / Sign up

Export Citation Format

Share Document