scholarly journals Generalized Automatic Modulation Classification Under Non-Gaussian Noise with Varying SNR Conditions: A CNN Enable Method

Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.

2020 ◽  
Author(s):  
Yu Wang ◽  
Guan Gui ◽  
Tomoaki Ohtsuki ◽  
Fumiyuki Adachi

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization than the conventional ones.


2011 ◽  
Vol 403-408 ◽  
pp. 2547-2551
Author(s):  
Zhan Hui Cai ◽  
Yuan Cheng Yao

Automatic modulation classification plays a significant role in intelligent communication. A new method based on feature extraction is proposed for the recognition of M-ary Phase Shift Keying (MPSK) signals. As features, fourth and eighth order cumulants of the input samples and phase differential sequences were applied. It is shown that the cumulant-based features have robust anti-noise ability. Simulation results demonstrate that the correct classification probability (Pcc) with the proposed algorithm is higher than the existing approaches at low signal-to-noise ratio (SNR).


2020 ◽  
Vol 10 (15) ◽  
pp. 5045 ◽  
Author(s):  
Ming Lin ◽  
Byeongwoo Kim

The location of the vehicle is a basic parameter for self-driving cars. The key problem of localization is the noise of the sensors. In previous research, we proposed a particle-aided unscented Kalman filter (PAUKF) to handle the localization problem in non-Gaussian noise environments. However, the previous basic PAUKF only considers the infrastructures in two dimensions (2D). This previous PAUKF 2D limitation rendered it inoperable in the real world, which is full of three-dimensional (3D) features. In this paper, we have extended the previous basic PAUKF’s particle weighting process based on the multivariable normal distribution for handling 3D features. The extended PAUKF also raises the feasibility of fusing multisource perception data into the PAUKF framework. The simulation results show that the extended PAUKF has better real-world applicability than the previous basic PAUKF.


2014 ◽  
Vol 1049-1050 ◽  
pp. 2084-2087 ◽  
Author(s):  
Rong Li

For the using of multi-modulation, the precondition of receiving and demodulating signal is to determine the type of the modulation, so automatic recognition of modulation signal has significant influence on the analysis of the signals. In this paper, digital modulation recognition is studied respectively in different environment of White Gaussian Noise (WGN), stationary interference and multipath interference. The simulation results show that the recognition success rate is the highest in stationary interference environment and the lowest in multipath interference environment with the same signal to noise ratio (SNR).


Sign in / Sign up

Export Citation Format

Share Document