scholarly journals A Theory for Analysis of Pulse Electromagnetic Radiation

Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.

2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive energies for pulse radiators in free space is presented. With the proposed definition of reactive energies and radiative energies, power balance at arbitrarily chosen observation surfaces are established, which intuitively shows that the Poynting vector contains not only the power flux density associated with the radiative energies, but also the influence of the fluctuation of the reactive energies dragging by the sources. A new vector is defined for the radiative power flux density. The radiative energies passing through observation surfaces enclosing the radiator are accurately calculated. Numerical results verifies that the proposed radiative flux density is more proper for expressing the radiative power flux density than the Poynting vector.


2020 ◽  
Author(s):  
gaobiao xiao

<p>Poynting theorem plays a very important role in analyzing electromagnetic phenomena. The electromagnetic power flux density is usually expressed with the Poynting vector. However, since Poynting theorem basically focuses on the power balance in a system, it is not so convenient in some situations to use it for evaluating the electromagnetic energies. The energy balance issue for time varying fields is revisited in this paper, and a set of energy balance equations are introduced, and a modified method for evaluating power flux is proposed.</p>


2020 ◽  
Author(s):  
gaobiao xiao

<p>Poynting theorem plays a very important role in analyzing electromagnetic phenomena. The electromagnetic power flux density is usually expressed with the Poynting vector. However, since Poynting theorem basically focuses on the power balance in a system, it is not so convenient in some situations to use it for evaluating the electromagnetic energies. The energy balance issue for time varying fields is revisited in this paper, and a set of energy balance equations are introduced, and a modified method for evaluating power flux is proposed.</p>


2021 ◽  
Vol 2 (5) ◽  
pp. 5-11
Author(s):  
G. A. Tashpulatova ◽  
◽  
A. N. Krasavin

This article is about instrumental measurements of the FR EMR energy flux density. The measurement results were analyzed with the division of the data obtained by the purpose of buildings and the height of the antenna equipment placement, a hygienic assessment of the RF EMR levels created by the equipment of base stations of cellular communications, installed on the roofs of residential and public buildings and adjacent territories of Tashkent is given. A proposal is made on the rational placement of radio engineering facilities.Keywords:electromagnetic field; electromagnetic safety; base station for mobile communications; protection of public health; sanitary supervision


A new measurement of the velocity of electromagnetic radiation is described. The result has been obtained, using micro-waves at a frequency of 24005 Mc/s ( λ = 1∙25 cm), with a form of interferometer which enables the free-space wave-length to be evaluated. Since the micro-wave frequency can also be ascertained, phase velocity is calculated from the product of frequency and wave-length. The most important aspect of the experiment is the application to the measured wave-length of a correction which arises from diffraction of the micro-wave beam. This correction is new to interferometry and is discussed in detail. The result obtained for the velocity, reduced to vacuum conditions, is c 0 = 299792∙6 ± 0∙7 km/s.


2012 ◽  
Vol 101 (14) ◽  
pp. 144104 ◽  
Author(s):  
B. Despax ◽  
O. Pascal ◽  
N. Gherardi ◽  
N. Naude ◽  
A. Belinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document