power flux
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 40)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Livia Casali ◽  
David Eldon ◽  
Adam G McLean ◽  
Tom H Osborne ◽  
Anthony W Leonard ◽  
...  

Abstract A comparative study of nitrogen versus neon has been carried out to analyze the impact of the two radiative species on power dissipation, SOL impurity distribution, divertor and pedestal characteristics. The experimental results show that N remains compressed in the divertor, thereby providing high radiative losses without affecting the pedestal profiles and displacing carbon as dominant radiator. Neon, instead, radiates more upstream than N thus reducing the power flux through the separatrix leading to a reduced ELM frequency and compression in the divertor. A significant amount of neon is measured in the plasma core leading to a steeper density gradient. The different behaviour between the two impurities is confirmed by SOLPS-ITER modelling which for the first time at DIII-D includes multiple impurity species and a treatment of full drifts, currents and neutral-neutral collisions. The impurity transport in the SOL is studied in terms of the parallel momentum balance showing that N is mostly retained in the divertor whereas Ne leaks out consistent with its higher ionization potential and longer mean free path. This is also in agreement with the enrichment factor calculations which indicate lower divertor enrichment for neon. The strong ionization source characterizing the SAS divertor causes a reversal of the main ions and impurity flows. The flow reversal together with plasma drifts and the effect of the thermal force contribute significantly in the shift of the impurity stagnation point affecting impurity leakage. This work provides a demonstration of the impurity leakage mechanism in a closed divertor structure and the consequent impact on pedestal. Since carbon is an intrinsic radiator at DIII-D, in this paper we have also demonstrated the different role of carbon in the N vs Ne seeded cases both in the experiments and in the numerical modeling. Carbon contributes more when neon seeding is injected compared to when nitrogen is used. Finally, the results highlight the importance of accompanying experimental studies with numerical modelling of plasma flows, drifts and ionization profile to determine the details of the SOL impurity transport as the latter may vary with changes in divertor regime and geometry. In the cases presented here, plasma drifts and flow reversal caused by high level of closure in the slot upper divertor at DIII-D play an important role in the underlined mechanism.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7212
Author(s):  
Helena Nowakowska ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Mariusz Jasiński

A new type of microwave plasma source is presented in which plasma at atmospheric pressure is generated inside a quartz rectangular flat box placed in a stripline supplied by a 2.45 GHz coaxial line. The plasma has a sheet shape and is designed for surface modification. Electric field and power flux distributions, tuning characteristics, and power characteristics (ratios of radiated, absorbed, and entering power) are numerically studied for three configurations: open, semi-closed, and closed. The calculations show that near-zero radiation reduction is possible only for the closed configuration, while the ratio of radiated power to entering power is always greater than 30% for the other configurations. The moving plunger is not sufficient for the ratio of reflected to incident power to fall below 20% for both the closed and open configurations. This is possible for the semi-closed configuration, but then the radiated power is the highest. The experiment shows that for the same entering power, the plasma volume is largest for the closed configuration and smallest for the open configuration, which we attribute to the difference in radiated power. The plasma generated using the closed stripline configuration has a larger volume than plasma generated using the rectangular waveguide.


Nukleonika ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 147-151
Author(s):  
Wojciech Kubiński ◽  
Piotr Darnowski ◽  
Kamil Chęć

Abstract The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel configuration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (k eff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the first fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.


2021 ◽  
Vol 9 (5) ◽  
pp. 430-441
Author(s):  
Aphig Hasanov ◽  
Ruslan Hasanov ◽  
Asad Rustamov ◽  
Rovchan Ahmadov ◽  
Masud Sadikhov

The features of the photoelastic effect are discussed and it is shown that they can be used to measure the parameters of a laser and a photodetector, which are the main units of any optoelectronic product. A brief review of the known methods for measuring the parameters of a laser and a photodetector is carried out, and some limitations in their application are noted. The possibility of using the features of the photoelastic effect for measuring the parameters of the inertia of the photodetector is theoretically substantiated. A formula for calculating the response at the output of an acousto-optic processor to a rectangular input action is derived and used to separately estimate the time of crossing the optical beam by an elastic wave packet and the inertia of the photodetector. It has also been proven that by choosing a short input action, the features of the photoelastic effect can be used to determine the configuration of the cross section of the laser beam and the law of the distribution of the power flux density in it. The results of theoretical studies have been tested by numerical calculations and confirmed by experimental measurements.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive electromagnetic energies of a radiator in vacuum is presented. In vacuum, the radiative electromagnetic energies will depart from their sources and travel to infinity, generating a power flux in the space. However, the reactive electromagnetic energies are bounded to their sources. They appear and disappear almost in the same time with their sources, and their fluctuation also causes a power flux in the space. In the proposed theory, the reactive electromagnetic energies of a radiator are defined by postulating that they have properties similar to the self-energies in the charged particle theory. More importantly, in addition to a main term of source-potential products, the reactive energies contain a special energy term which will last to exist a short time after the sources disappear. This oscillating energy is related to the electric displacement and the vector potential, and seems to be responsible for energy exchanging between the reactive energy and the radiative energy in the radiation process, performing like the Schott energy term. As the Poynting vector describes the total power flux density related to the total electromagnetic energy, it should include the contributions of the propagation of the radiative energies and the fluctuation of the reactive energies. The mutual electromagnetic couplings between two radiators are also defined in a similar way in which the vector potential plays a central role. The reactive electromagnetic energies can be evaluated with explicit expressions in time domain and frequency domain. The theory is verified with the Hertzian dipole and numerical examples.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive electromagnetic energies of a radiator in vacuum is presented. In vacuum, the radiative electromagnetic energies will depart from their sources and travel to infinity, generating a power flux in the space. However, the reactive electromagnetic energies are bounded to their sources. They appear and disappear almost in the same time with their sources, and their fluctuation also causes a power flux in the space. In the proposed theory, the reactive electromagnetic energies of a radiator are defined by postulating that they have properties similar to the self-energies in the charged particle theory. More importantly, in addition to a main term of source-potential products, the reactive energies contain a special energy term which will last to exist a short time after the sources disappear. This oscillating energy is related to the electric displacement and the vector potential, and seems to be responsible for energy exchanging between the reactive energy and the radiative energy in the radiation process, performing like the Schott energy term. As the Poynting vector describes the total power flux density related to the total electromagnetic energy, it should include the contributions of the propagation of the radiative energies and the fluctuation of the reactive energies. The mutual electromagnetic couplings between two radiators are also defined in a similar way in which the vector potential plays a central role. The reactive electromagnetic energies can be evaluated with explicit expressions in time domain and frequency domain. The theory is verified with the Hertzian dipole and numerical examples.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 42-50
Author(s):  
V. I. Mordachev

The goal of the work is to substantiate the technique for assessing the intensity of electromagnetic background generated by the set of radiating user devices of mobile communications in multi-storey buildings. For known empirical models of radio wave propagation in buildings, expressions are obtained for the probability distribution density and expectation of the power flux density of electromagnetic fields generated inside building by these sources from various parts of the building's interior space: from the near zone with radio wave propagation conditions similar to free space; and from the far zone, for which, along with intense attenuation of radio waves due to internal obstacles, a «quasi-waveguide» propagation of radio waves along corridors and industrial premises is also possible in certain directions. Relationships are obtained for the average levels of individual components of the electromagnetic background, determined as scalar sums of power flux density values of the fields generated by the sets of radiating devices of both the near zone and the far zone as a whole or its individual parts, characterized by different conditions of radio wave propagation. A method is proposed for assessing the electromagnetic background inside buildings based on approximation of sections of the inner surface of the premises in which the observation point is located, and the outer surface of the building, in the inner space of which radiation sources are randomly distributed, by the corresponding sections of the inner and outer spherical surfaces that are the subtend areas of the corresponding solid angles, in space elements of which a different spatial densities and radiation powers of sources and different conditions of radio wave propagation are possible. The results can be used to analyze the electromagnetic ecology of habitat and the electromagnetic safety of population at the full-scale implementation of 4G/5G/6G mobile communications, as well as to analyze the electromagnetic compatibility of systems using frequency bands for mobile communications on a primary and secondary basis.


2021 ◽  
Author(s):  
gaobiao xiao

A theory for analyzing the radiative and reactive electromagnetic energies of a radiator in vacuum is presented. In vacuum, the radiative electromagnetic energies will depart from their sources and travel to infinity, generating a power flux in the space. However, the reactive electromagnetic energies are bounded to their sources. They appear and disappear almost in the same time with their sources, and their fluctuation also causes a power flux in the space. In the proposed theory, the reactive electromagnetic energies of a radiator are defined by postulating that they have properties similar to the self-energies in the charged particle theory. More importantly, in addition to a main term of source-potential products, the reactive energies contain a special energy term which will last to exist a short time after the sources disappear. This oscillating energy is related to the electric displacement and the vector potential, and seems to be responsible for energy exchanging between the reactive energy and the radiative energy in the radiation process, performing like the Schott energy term. As the Poynting vector describes the total power flux density related to the total electromagnetic energy, it should include the contributions of the propagation of the radiative energies and the fluctuation of the reactive energies. The mutual electromagnetic couplings between two radiators are also defined in a similar way in which the vector potential plays a central role. The reactive electromagnetic energies can be evaluated with explicit expressions in time domain and frequency domain. The theory is verified with the Hertzian dipole and numerical examples.


2021 ◽  
Author(s):  
A.V. Arzhannikov ◽  
P.V. Kalinin ◽  
A.A. Kasatov ◽  
S.A. Kuznetsov ◽  
K.N. Kuklin ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Manni Jia ◽  
Alberto Loarte ◽  
Youwen Sun ◽  
Qun Ma ◽  
Xuemin Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document