scholarly journals A New Convolutional Neural Network based on a Saprse Convolutional Layer for Animal Face Detection

Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.

2021 ◽  
Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.


2021 ◽  
Vol 7 ◽  
pp. e766
Author(s):  
Ammar Amjad ◽  
Lal Khan ◽  
Hsien-Tsung Chang

Speech emotion recognition (SER) is a challenging issue because it is not clear which features are effective for classification. Emotionally related features are always extracted from speech signals for emotional classification. Handcrafted features are mainly used for emotional identification from audio signals. However, these features are not sufficient to correctly identify the emotional state of the speaker. The advantages of a deep convolutional neural network (DCNN) are investigated in the proposed work. A pretrained framework is used to extract the features from speech emotion databases. In this work, we adopt the feature selection (FS) approach to find the discriminative and most important features for SER. Many algorithms are used for the emotion classification problem. We use the random forest (RF), decision tree (DT), support vector machine (SVM), multilayer perceptron classifier (MLP), and k-nearest neighbors (KNN) to classify seven emotions. All experiments are performed by utilizing four different publicly accessible databases. Our method obtains accuracies of 92.02%, 88.77%, 93.61%, and 77.23% for Emo-DB, SAVEE, RAVDESS, and IEMOCAP, respectively, for speaker-dependent (SD) recognition with the feature selection method. Furthermore, compared to current handcrafted feature-based SER methods, the proposed method shows the best results for speaker-independent SER. For EMO-DB, all classifiers attain an accuracy of more than 80% with or without the feature selection technique.


Author(s):  
Xiaofeng Li ◽  
Jiahao Xia ◽  
Libo Cao ◽  
Guanjun Zhang ◽  
Xiexing Feng

Most current vision-based fatigue detection methods don’t have high-performance and robust face detector. They detect driver fatigue using single detection feature and cannot achieve real-time efficiency on edge computing devices. Aimed at solving these problems, this paper proposes a driver fatigue detection system based on convolutional neural network that can run in real-time on edge computing devices. The system firstly uses the proposed face detection network LittleFace to locate the face and classify the face into two states: small yaw angle state “normal” and large yaw angle state “distract.” Secondly, the speed-optimized SDM algorithm is conducted only in the face region of the “normal” state to deal with the problem that the face alignment accuracy decreases at large angle profile, and the “distract” state is used to detect driver distraction. Finally, feature parameters EAR, MAR and head pitch angle are calculated from the obtained landmarks and used to detect driver fatigue respectively. Comprehensive experiments are conducted to evaluate the proposed system and the results show its practicality and superiority. Our face detection network LittleFace can achieve 88.53% mAP on AFLW test set at 58 FPS on the edge computing device Nvidia Jetson Nano. Evaluation results on YawDD, 300 W, and DriverEyes show the average detection accuracy of the proposed system can reach 89.55%.


2018 ◽  
Vol 8 (11) ◽  
pp. 2222 ◽  
Author(s):  
Chengbin Peng ◽  
Wei Bu ◽  
Jiangjian Xiao ◽  
Ka-chun Wong ◽  
Minmin Yang

Face detection for security cameras monitoring large and crowded areas is very important for public safety. However, it is much more difficult than traditional face detection tasks. One reason is, in large areas like squares, stations and stadiums, faces captured by cameras are usually at a low resolution and thus miss many facial details. In this paper, we improve popular cascade algorithms by proposing a novel multi-resolution framework that utilizes parallel convolutional neural network cascades for detecting faces in large scene. This framework utilizes the face and head-with-shoulder information together to deal with the large area surveillance images. Comparing with popular cascade algorithms, our method outperforms them by a large margin.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Sign in / Sign up

Export Citation Format

Share Document