sparse feature selection
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.


2021 ◽  
Author(s):  
Islem Jarraya ◽  
Fatma BenSaid ◽  
Wael Ouarda ◽  
Umapada Pal ◽  
Adel Alimi

This paper focuses on the face detection problem of three popular animal cat-egories that need control such as horses, cats and dogs. To be precise, a new Convolutional Neural Network for Animal Face Detection (CNNAFD) is actu-ally investigated using processed filters based on gradient features and applied with a new way. A new convolutional layer is proposed through a sparse feature selection method known as Automated Negotiation-based Online Feature Selection (ANOFS). CNNAFD ends by stacked fully connected layers which represent a strong classifier. The fusion of CNNAFD and MobileNetV2 constructs the newnetwork CNNAFD-MobileNetV2 which improves the classification results and gives better detection decisions. Our work also introduces a new Tunisian Horse Detection Database (THDD). The proposed detector with the new CNNAFD-MobileNetV2 network achieved an average precision equal to 99.78%, 99% and 98.28% for cats, dogs and horses respectively.


Author(s):  
Razieh Sheikhpour ◽  
Roohallah Fazli ◽  
Sanaz Mehrabani

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expression of 7129 genes of 25 patients with acute myeloid leukemia (AML), and 47 patients with lymphoblastic leukemia (ALL) achieved by the microarray technology were used in this study. Then, the important genes were identified using a sparse feature selection method to diagnose AML and ALL tissues based on the machine learning methods such as support vector machine (SVM), Gaussian kernel density estimation based classifier (GKDEC), k-nearest neighbor (KNN), and linear discriminant classifier (LDC). Results: Diagnosis of ALL and AML was done with the accuracy of 100% using 8 genes of microarray data selected by the sparse feature selection method, GKDEC, and LDC. Moreover, the KNN classifier using 6 genes and the SVM classifier using 7 genes diagnosed AML and ALL with the accuracy of 91.18% and 94.12%, respectively. The gene with the description “Paired-box protein PAX2 (PAX2) gene, exon 11 and complete CDs” was determined as the most important gene in the diagnosis of ALL and AML. Conclusion: The experimental results of the current study showed that AML and ALL can be diagnosed with high accuracy using sparse feature selection and machine learning methods. It seems that the investigation of the expression of selected genes in this study can be helpful in the diagnosis of ALL and AML.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 28101-28110
Author(s):  
El Barakaz Fatima ◽  
Boutkhoum Omar ◽  
El Moutaouakkil Abdelmajid ◽  
Furqan Rustam ◽  
Arif Mehmood ◽  
...  

2020 ◽  
Vol 22 (11) ◽  
pp. 2844-2857 ◽  
Author(s):  
Yongshan Zhang ◽  
Jia Wu ◽  
Zhihua Cai ◽  
Philip S. Yu

2020 ◽  
Vol 531 ◽  
pp. 13-30
Author(s):  
Razieh Sheikhpour ◽  
Mehdi Agha Sarram ◽  
Sajjad Gharaghani ◽  
Mohammad Ali Zare Chahooki

Sign in / Sign up

Export Citation Format

Share Document