scholarly journals Filter Distortions in Ultra High-Throughput Satellites: Models, Parameters and Multicarrier Optimization

Author(s):  
Tony Colin ◽  
Thomas Delamotte ◽  
Andreas Knopp

<div>Ultra high-throughput satellite systems are expected to play an essential role in future beyond 5G and 6G networks. These systems must remain as flexible as possible to adapt to heterogeneous traffic demands, while also delivering the highest possible rate for dedicated services. Satellites flexible payloads are increasingly employing wideband output multiplexers. In this context, it is now more important than ever to evaluate frequency-dependent degradations on multicarrier signals. In particular, it is critical to characterize the distortions entailed by the output multiplexers filters. In this paper, models are presented and novel formulas are derived to determine the carrier-to-interference ratio resulting from these distortions. Derivations are oriented towards the applicability of either high-accuracy (e.g., for link budget) or low-complexity calculations (e.g., for real-time carrier allocation). The influence of key parameters such as the optimal decision instant, symbol rate and roll-off factor is thoroughly analyzed. Furthermore, formulas are evaluated in a practical scenario: the dynamic carrier allocation optimization. They are combined with efficient optimization algorithms to obtain the best performance based on user fairness. Relevant metrics such as accuracy, complexity and allocation gain are also investigated. In the end, the application of the proposed formulas and algorithms leads to a significant allocation gain that is increasing with the number of carriers. The feasibility of real-time dynamic carrier allocation to further increase the capacity of the next generation of satellite systems is emphasized.</div>

2021 ◽  
Author(s):  
Tony Colin ◽  
Thomas Delamotte ◽  
Andreas Knopp

<div>Ultra high-throughput satellite systems are expected to play an essential role in future beyond 5G and 6G networks. These systems must remain as flexible as possible to adapt to heterogeneous traffic demands, while also delivering the highest possible rate for dedicated services. Satellites flexible payloads are increasingly employing wideband output multiplexers. In this context, it is now more important than ever to evaluate frequency-dependent degradations on multicarrier signals. In particular, it is critical to characterize the distortions entailed by the output multiplexers filters. In this paper, models are presented and novel formulas are derived to determine the carrier-to-interference ratio resulting from these distortions. Derivations are oriented towards the applicability of either high-accuracy (e.g., for link budget) or low-complexity calculations (e.g., for real-time carrier allocation). The influence of key parameters such as the optimal decision instant, symbol rate and roll-off factor is thoroughly analyzed. Furthermore, formulas are evaluated in a practical scenario: the dynamic carrier allocation optimization. They are combined with efficient optimization algorithms to obtain the best performance based on user fairness. Relevant metrics such as accuracy, complexity and allocation gain are also investigated. In the end, the application of the proposed formulas and algorithms leads to a significant allocation gain that is increasing with the number of carriers. The feasibility of real-time dynamic carrier allocation to further increase the capacity of the next generation of satellite systems is emphasized.</div>


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Lina Mao ◽  
Wenquan Li ◽  
Pengsen Hu ◽  
Guiliang Zhou ◽  
Huiting Zhang ◽  
...  

Author(s):  
Xiaojia Jiang ◽  
Mingsong Zang ◽  
Fei Li ◽  
Chunxi Hou ◽  
Quan Luo ◽  
...  

Biological nanopore-based techniques have attracted more and more attention recently in the field of single-molecule detection, because they allow the real-time, sensitive, high-throughput analysis. Herein, we report an engineered biological...


Author(s):  
Huaicong Kong ◽  
Min Lin ◽  
Zining Wang ◽  
Jian Ouyang ◽  
Julian Cheng

Sign in / Sign up

Export Citation Format

Share Document