scholarly journals KGPMH: A hybrid approach for solving a novel facility location problem

Author(s):  
Maryam DehghanChenary ◽  
Arman Ferdowsi ◽  
Fariborz Jolai ◽  
Reza Tavakkoli-Moghaddam

<pre>The focus of this paper is to propose a bi-objective mathematical model for a new extension of a multi-period p-mobile hub location problem and then to devise an algorithm for solving it. The developed model considers the impact of the time spent traveling at the hubs' network, the time spent at hubs for processing the flows, and the delay caused by congestion at hubs with specific capacities. Following the unveiled model, a hybrid meta-heuristic algorithm will be devised that simultaneously takes advantage of a novel evaluation function, a clustering technique, and a genetic approach for solving the proposed model.</pre>

2021 ◽  
Author(s):  
Maryam DehghanChenary ◽  
Arman Ferdowsi ◽  
Fariborz Jolai ◽  
Reza Tavakkoli-Moghaddam

<pre>The focus of this paper is to propose a bi-objective mathematical model for a new extension of a multi-period p-mobile hub location problem and then to devise an algorithm for solving it. The developed model considers the impact of the time spent traveling at the hubs' network, the time spent at hubs for processing the flows, and the delay caused by congestion at hubs with specific capacities. Following the unveiled model, a hybrid meta-heuristic algorithm will be devised that simultaneously takes advantage of a novel evaluation function, a clustering technique, and a genetic approach for solving the proposed model.</pre>


2021 ◽  
Vol 15 (3) ◽  
pp. 330-338
Author(s):  
Mohammad Reza Shahraki ◽  
Shima Shirvani

Facility location is a factor of competitiveness and demand satisfaction. Using a hub on the network can facilitate communication across the network and reduce costs. In the current study, with regards to demand uncertainty, operational costs of the hub, and building extra capacity in the hub it has been aimed to develop a mathematical programing model for the middle hub location problem with a certain capacity,. Due to the presence of the uncertainty in the problem’s parameters, the possibilistic programing approach which is a subset of fuzzy programing has been used. The proposed model has been investigated via GAMS software and the CPLX solver. Finally, the proposed model has been validated by the dataset obtained from Iran Aviation Dataset (IAD) for a round-trip, and the proper locations for facilities in each level and allocation of the customers to the facilities, were determined by the obtained Pareto analysis answer.


2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


Author(s):  
Mohammad Mirabi ◽  
Parya Seddighi

AbstractThe hub location problems involve locating facilities and designing hub networks to minimize the total cost of transportation (as a function of distance) between hubs, establishing facilities and demand management. In this paper, we consider the capacitated cluster hub location problem because of its wide range of applications in real-world cases, especially in transportation and telecommunication networks. In this regard, a mathematical model is presented to address this problem under capacity constraints imposed on hubs and transportation lines. Then, a new hybrid algorithm based on simulated annealing and ant colony optimization is proposed to solve the presented problem. Finally, the computational experiments demonstrate that the proposed heuristic algorithm is both effective and efficient.


Sign in / Sign up

Export Citation Format

Share Document