scholarly journals Practical Compact Routing on Sparse Graphs

Author(s):  
Kai Hormann ◽  
Craig Gotsman

We describe a simple and practical algorithm for compact routing on graphs which admit compact and balanced vertex separators. Using a recursive nested dissection of then-vertex graph based on these separators, we construct routing tables with as few as O(log n) entries per vertex in a preprocessing step. They support handshaking-based routing on the graph with moderate stretch, where the handshaking can be implemented similarly to a DNS lookup. We describe a basic version of the algorithm that requires modifiable headers and a more advanced version which eliminates this need and provides better stretch. A number of algorithmic parameters control a graceful tradeoff between the size of the routing tables and the stretch. Our routing algorithm is most effective on planar graphs and unit disk graphs of moderate edge/vertex density.

2021 ◽  
Author(s):  
Kai Hormann ◽  
Craig Gotsman

We describe a simple and practical algorithm for compact routing on graphs which admit compact and balanced vertex separators. Using a recursive nested dissection of then-vertex graph based on these separators, we construct routing tables with as few as O(log n) entries per vertex in a preprocessing step. They support handshaking-based routing on the graph with moderate stretch, where the handshaking can be implemented similarly to a DNS lookup. We describe a basic version of the algorithm that requires modifiable headers and a more advanced version which eliminates this need and provides better stretch. A number of algorithmic parameters control a graceful tradeoff between the size of the routing tables and the stretch. Our routing algorithm is most effective on planar graphs and unit disk graphs of moderate edge/vertex density.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate


2019 ◽  
Vol 29 (1) ◽  
pp. 153-162
Author(s):  
Shachar Sapir ◽  
Asaf Shapira

AbstractThe induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if an n-vertex graph G is ε-far from being induced H-free then G contains δH(ε) · nh induced copies of H. Improving upon the original proof, Conlon and Fox proved that 1/δH(ε)is at most a tower of height poly(1/ε), and asked if this bound can be further improved to a tower of height log(1/ε). In this paper we obtain such a bound for graphs G of density O(ε). We actually prove a more general result, which, as a special case, also gives a new proof of Fox’s bound for the (non-induced) removal lemma.


Author(s):  
Renu Verma ◽  
Mohammad Ayoub Khan ◽  
Amit Zinzuwadiya

Efficient routing is challenging and crucial problem in the irregular mesh NoC topologies because of increasing hardware cost and routing tables. In this paper, the authors propose an efficient deadlock-free routing algorithm for irregular mesh NoCs which reduces the latency and power consumption significantly. The problem with degree priority based routing algorithm is that it cannot remove deadlocks in irregular mesh topologies. Therefore, the authors use the extended Logic Based Distributed Routing (LBDRe) to remove deadlock situations without using any virtual channel in the degree priority based routing algorithm. The proposed LBDRe based technique also removes the dependency on routing tables. The authors further apply odd-Even routing algorithm to LBDRe to ensure that some turns are prohibited to remove deadlocks. Experimental results show that the proposed routing algorithm reduces power consumption by 9–22% and overall average latency by 8–12% with the minimum hardware cost for the irregular mesh NoC topologies.


Algorithmica ◽  
1996 ◽  
Vol 15 (5) ◽  
pp. 448-466 ◽  
Author(s):  
G. N. Frederickson

2021 ◽  
Vol 4 (1) ◽  
pp. 65-70
Author(s):  
Marezi Handika ◽  
Herwin Herwin ◽  
Dwi Haryono ◽  
Rometdo Muzawi

SMKN 2 Teluk Kuantan has 4 (four) main lines of internet network. Of the four networks have their own configuration. Static routing applied in SMKN 2 Teluk kuantan for the four modems of the network has their own area, because it is not under one control of the modem to the Router. Static Routing in SMKN 2 Teluk Kuantan is very possible to be damaged or trouble itself on the network of each modem. Static routing problems are so complex in the form of routing information into the routing table that is set manually by the network administrator. Dynamic Routing is very possible to be implemented in SMKN 2 Teluk Kuantan. where dynamic routing has a basic routing algorithm of dynamic routing. Dynamic Routing enters routing information into the routing table through exchanging information with other routers and creates routing tables dynamically, on dynamic routing network administrators will not enter the entry route manually into the routing table. Routing Open Short Path First (OSPF) is a type of routing protocol that builds topology independently by choosing the best path then iji network quality if the best path is in interference and perform Quality of Service (QoS) against realtime data.


Sign in / Sign up

Export Citation Format

Share Document