scholarly journals Antnet: A Robust Routing Algorithm for Data Networks

1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate

2001 ◽  
Vol 12 (03) ◽  
pp. 365-384 ◽  
Author(s):  
MARC BUI ◽  
SAJAL K. DAS ◽  
AJOY K. DATTA ◽  
DAI THO NGUYEN

We propose a novel approach for shortest path routing in wireless mobile networks. The approach makes use of n mobile agents initially launched from n mobile nodes forming the network. The agents move randomly from node to node and update routing information as they go. The approach is presented in this paper with two protocols. Both of them exhibit good performance in terms of the network and computing resource consumptions. The first protocol relies on independent mobile agents and imposes a minimum bandwidth requirement on individual mobile agents. Each agent carries the link state of its creator and this information remains unchanged except when the mobile agent returns to the home node. The second protocol is a refinement of the first protocol, with some form of interaction between the mobile agents. Each agent maintains the routing table of its creator instead of link state. The randomly walking agents spread the update information and compute the shortest paths via exchanging network state information between the routing tables they carry and the routing tables at the nodes they traverse. The correctness of the protocols is proven. Our analysis shows that the agent cooperation improves the system performance when dealing with topology and link cost changes.


2012 ◽  
Vol 532-533 ◽  
pp. 1775-1779
Author(s):  
Jian Lian ◽  
Yan Zhang ◽  
Cheng Jiang Li

We present an efficient K-shortest paths routing algorithm for computer networks. This Algorithm is based on enhancements to currently used link-state routing algorithms such as OSPF and IS-IS, which are only focusing on finding the shortest path route by adopting Dijkstra algorithm. Its desire effect to achieve is through the use of K-shortest paths algorighm, which has been implemented successfully in some fileds like traffic engineering. The correctness of this Algorithm is discussed at the same time as long as the comparison with OSPF.


1998 ◽  
Vol 9 ◽  
pp. 317-365 ◽  
Author(s):  
G. Di Caro ◽  
M. Dorigo

This paper introduces AntNet, a novel approach to the adaptive learning of routing tables in communications networks. AntNet is a distributed, mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems. AntNet's agents concurrently explore the network and exchange collected information. The communication among the agents is indirect and asynchronous, mediated by the network itself. This form of communication is typical of social insects and is called stigmergy. We compare our algorithm with six state-of-the-art routing algorithms coming from the telecommunications and machine learning fields. The algorithms' performance is evaluated over a set of realistic testbeds. We run many experiments over real and artificial IP datagram networks with increasing number of nodes and under several paradigmatic spatial and temporal traffic distributions. Results are very encouraging. AntNet showed superior performance under all the experimental conditions with respect to its competitors. We analyze the main characteristics of the algorithm and try to explain the reasons for its superiority.


Named Data Networking (NDN) is afast growing architecture, which is proposed as an alternative to existing IP. NDN allows users to request the data identified by a unique name without any information of the hosting entity. NDN supports in-network caching of contents, multi-path forwarding, and data security. In NDN, packet-forwarding decisions are driven by lookup operations on content name of the NDN packets. An NDN node maintains set of routing tables that aid in forwarding decisions. Forwarding the NDN packets depend on lookup of these NDN tables and performing Longest Prefix Matching (LPM) against these NDN tables. The NDN names are unbounded and of variable length. These features along with large and dynamic NDN tables pose several challenges that include increased memory requirement and delayed lookup operations. To this end, there is a need for an efficient data structure that support fast lookup operations with low memory overhead. Several lookup techniques are proposed in this direction. Traversing trie structures would be slow since every level of trie require a memory access. Hash tables incur additional hash computations on names and suffer from collisions. Bloom filters suffer from false positives and do not support deletions. Improving the performance of these structures can lead to a better lookup solution.This survey paper explores different lookup structures for NDN networks. Performance is measured with respect to lookup rate and memory efficiency.


2006 ◽  
Vol 07 (01) ◽  
pp. 91-99 ◽  
Author(s):  
Keith Hellman ◽  
Michael Colagrosso

We investigate a known optimal lifetime solution for a linear wireless sensor network through simulation, and propose alternative solutions where a known optimal solution does not exist. The network is heterogeneous in the sensors' energy distribution and also in the amount of data each sensor must communicate. As a basis for comparison, we analyze the lifetime of a network using a simple, nearest-neighbor routing algorithm, and an analytic solution to the optimal lifetime of networks meeting certain constraints. Alternative solutions considered range from those requiring global knowledge of the network to solutions using only next-neighbor knowledge. We compare the performance of all the routing algorithms in simulation.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-6
Author(s):  
Mohammed Shaba Saliu ◽  
Muyideen Omuya Momoh ◽  
Pascal Uchenna Chinedu ◽  
Wilson Nwankwo ◽  
Aliu Daniel

Network-on-Chip (NoC) has been proposed as a viable solution to the communication challenges on System-on-Chips (SoCs). As the communication paradigm of SoC, NoCs performance depends mainly on the type of routing algorithm chosen. In this paper different categories of routing algorithms were compared. These include XY routing, OE turn model adaptive routing, DyAD routing and Age-Aware adaptive routing.  By varying the load at different Packet Injection Rate (PIR) under random traffic pattern, comparison was conducted using a 4 × 4 mesh topology. The Noxim simulator, a cycle accurate systemC based simulator was employed. The packets were modeled as a Poisson distribution; first-in-first-out (FIFO) input buffer channel with a depth of five (5) flits and a flit size of 32 bits; and a packet size of 3 flits respectively. The simulation time was 10,000 cycles. The findings showed that the XY routing algorithm performed better when the PIR is low.  In a similar vein, the DyAD routing and Age-aware algorithms performed better when the load i.e. PIR is high.


Author(s):  
S.Krishna Prabha ◽  
◽  
Broumi said ◽  
Selçuk Topal ◽  
◽  
...  

Routers steer and bid network data, through packets that hold a variety of categories of data such as records, messages, and effortless broadcasts like web interfaces. The procedure of choosing a passageway for traffic in a network or between several networks is called routing. Starting from telephone networks to public transportation the principles of routing are applied. Routing is the higher-level decision-making that directs network packets from their source en route for their destination through intermediate network nodes by specific packet forwarding mechanisms. The main function of the router is to set up optimized paths among the different nodes in the network. An efficient novel routing algorithm is proposed with the utilization of neutrosophic fuzzy logic in this work addition to many routing algorithms for finding the optimal path in the literature. In this approach, each router makes its own routing decision in the halting time. Various concepts like routing procedures, most expected vector, most expected object, and list of estimated delays are explained.


Sign in / Sign up

Export Citation Format

Share Document