scholarly journals T4 SYNDROME: THE PAIN IN NECK THAT IS OFTEN MISDIAGNOSED

2013 ◽  
Vol 2 (2) ◽  
pp. 2
Author(s):  
Sadaf Shafqat

It has been ascertained that musculoskeletal issues arising from the upper thoracic spine are often incorrectly diagnosed as cervical in nature, by both the therapists and the medical professionals equally. This may be due to the reason that the lower cervical and upper thoracic vertebrae are closely linked with regards to cervical movements, predominantly, flexion, and extension. Symptoms from the upper thoracic spine can also bring up pain in the arm and forearm, thus, mimic a heart attack1. One such condition of upper thoracic spine is of T4 vertebra - the T4 syndrome. In 1994, Evans P, discussed the basic science behind the genesis of T4 syndrome and argued that, the term upper thoracic disorder might be a more accurate term, in view of the fact that, the condition generally ranges between T1 to T72. However, it is generally referred to as T4 or T3 syndrome3. If we examine the vertebral column, the compressive load at T1 is about 9% of body weight, increasing to 33% at T8 and 47% at T124. In between each one of these vertebrae, lie the facet joints and discs, which help in maintaining the weight and directing the movement among the individual vertebrae. When either of these joints gets injured, damage in turn can be imposed on the nerves

Neurosurgery ◽  
1989 ◽  
Vol 24 (5) ◽  
pp. 768-771
Author(s):  
George R. Cybulski ◽  
James L. Stone ◽  
Paul M. Arnold ◽  
Justo Rodriguez ◽  
Sankar Banerjee

ABSTRACT The case of a patient with multiple contiguous fractures of the cervical and upper thoracic spine without neurological deficit or spinal instability is presented. Injury to each of the cervical vertebrae plus the upper two thoracic vertebrae is unusual and has not been previously reported.


2019 ◽  
Vol 16 (2) ◽  
pp. 35-41 ◽  
Author(s):  
R. A. Kovalenko ◽  
V. V. Rudenko ◽  
V. A. Kashin ◽  
V. Yu. Cherebillo ◽  
D. A. Ptashnikov

Objective. To analyze the safety and accuracy of pedicle screw placement in the subaxial cervical and upper thoracic spine using patient-specific 3D navigation templates.Material and Methods. The study included 16 patients who underwent transpedicular implantation of screws in the subaxial cervical and upper thoracic vertebrae using patient-specific 3D navigation templates. A total of 88 screws were installed. All patients underwent preoperative CT angiography to assess visualization of the vertebral artery. Customized vertebral models and navigation templates were created using 3D printing technology. Models and templates were sterilized and used during surgery. The results of screw implantation, as well as the safety and accuracy of the placement, were assessed by postoperative CT.Results. The average deviation from the planned trajectory was 1.8 ± 0.9 mm. Deviation was estimated as class 1 (<2 mm) for 57 (64.77 %) screws, class 2 (2–4 mm) for 29 (32.95 %), and class 3 for two (2.27 %). The safety of screw implantation of grade 0 (the screw is completely inside the bone structure) was in 79 (89.77 %) cases, of grade 1 (<50 % of the screw diameter perforates the bone) – in 5 (5.68 %), and of grade 3 – in 2 (2.27 %).Conclusion. Using 3D navigation templates is an affordable and safe method of installing pedicle screws in the cervical and upper thoracic spine. The method can be used as an alternative to intraoperative CT navigation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Priscilla Magno ◽  
Mouen A. Khashab ◽  
Manuel Mas ◽  
Samuel A. Giday ◽  
Jonathan M. Buscaglia ◽  
...  

Background. NOTES techniques allow transesophageal access to the mediastinum. The aim of this study was to assess the feasibility of transesophageal biopsy of thoracic vertebrae.Methods. Nonsurvival experiments on four 50-kg porcine animals were performed. Transesophageal access to the mediastinum was attained using submucosal tunneling technique.Results. The posterior mediastinum was successfully accessed and navigated in all animals. Vertebral bodies and intervertebral spaces were easily approached while avoiding damage to adjacent vessels. Bone biopsy was successfully performed without complications, but the hardness of bone tissue resulted in small and fragmented samples.Conclusions. Peroral transesophageal access into the posterior mediastinum and thoracic vertebral bone biopsy was feasible and safe. The proximity of the esophagus to the vertebral column provides close and direct access to the thoracic spine and opens up new ground for the performance of multilevel anterior spine procedures using NOTES techniques.


2014 ◽  
Vol 05 (04) ◽  
pp. 349-354 ◽  
Author(s):  
Mark A. Rivkin ◽  
Jessica F. Okun ◽  
Steven S. Yocom

ABSTRACT Summary of Background Data: Multilevel posterior cervical instrumented fusions are becoming more prevalent in current practice. Biomechanical characteristics of the cervicothoracic junction may necessitate extending the construct to upper thoracic segments. However, fixation in upper thoracic spine can be technically demanding owing to transitional anatomy while suboptimal placement facilitates vascular and neurologic complications. Thoracic instrumentation methods include free-hand, fluoroscopic guidance, and CT-based image guidance. However, fluoroscopy of upper thoracic spine is challenging secondary to vertebral geometry and patient positioning, while image-guided systems present substantial financial commitment and are not readily available at most centers. Additionally, imaging modalities increase radiation exposure to the patient and surgeon while potentially lengthening surgical time. Materials and Methods: Retrospective review of 44 consecutive patients undergoing a cervicothoracic fusion by a single surgeon using the novel free-hand T1 pedicle screw technique between June 2009 and November 2012. A starting point medial and cephalad to classic entry as well as new trajectory were utilized. No imaging modalities were employed during screw insertion. Postoperative CT scans were obtained on day 1. Screw accuracy was independently evaluated according to the Heary classification. Results: In total, 87 pedicle screws placed were at T1. Grade 1 placement occurred in 72 (82.8%) screws, Grade 2 in 4 (4.6%) screws and Grade 3 in 9 (10.3%) screws. All Grade 2 and 3 breaches were <2 mm except one Grade 3 screw breaching 2-4 mm laterally. Only two screws (2.3%) were noted to be Grade 4, both breaching medially by less than 2 mm. No new neurological deficits or returns to operating room took place postoperatively. Conclusions: This modification of the traditional starting point and trajectory at T1 is safe and effective. It attenuates additional bone removal or imaging modalities while maintaining a high rate of successful screw placement compared to historical controls.


2002 ◽  
Vol 84 (6) ◽  
pp. 1028-1031 ◽  
Author(s):  
SHIH-HAO CHEN ◽  
TSUNG-JEN HUANG ◽  
YEUNG-JEN CHEN ◽  
HUI-PING LIU ◽  
ROBERT WEN-WEI HSU

Pain Medicine ◽  
2019 ◽  
Vol 20 (7) ◽  
pp. 1379-1386 ◽  
Author(s):  
Ricardo Ortega-Santiago ◽  
Maite Maestre-Lerga ◽  
César Fernández-de-las-Peñas ◽  
Joshua A Cleland ◽  
Gustavo Plaza-Manzano

Abstract Objectives The presence of trigger points (MTrPs) and pressure pain sensitivity has been well documented in subjects with neck and back pain; however, it has yet to be examined in people with upper thoracic spine pain. The purpose of this study was to investigate the presence of MTrPs and mechanical pain sensitivity in individuals with upper thoracic spine pain. Methods Seventeen subjects with upper thoracic spine pain and 17 pain-free controls without spine pain participated. MTrPs were examined bilaterally in the upper trapezius, rhomboid, iliocostalis thoracic, levator scapulae, infraspinatus, and anterior and middle scalene muscles. Pressure pain thresholds (PPTs) were assessed over T2, the C5-C6 zygapophyseal joint, the second metacarpal, and the tibialis anterior. Results The numbers of MTrPs between both groups were significantly different (P < 0.001) between patients and controls. The number of MTrPs for each patient with upper thoracic spine pain was 12.4 ± 2.8 (5.7 ± 4.0 active TrPs, 6.7 ± 3.4 latent TrPs). The distribution of MTrPs was significantly different between groups, and active MTrPs within the rhomboid (75%), anterior scalene (65%), and middle scalene (47%) were the most prevalent in patients with upper thoracic spine pain. A higher number of active MTrPs was associated with greater pain intensity and longer duration of pain history. Conclusions This study identified active MTrPs and widespread pain hypersensitivity in subjects with upper thoracic spine pain compared with asymptomatic people. Identifying proper treatment strategies might be able to reduce pain and improve function in individuals with upper thoracic spine pain. However, future studies are needed to examine this.


2004 ◽  
Vol 53 (2) ◽  
pp. 281-283
Author(s):  
Kazushi Nakamura ◽  
Kazunori Yone ◽  
Kyoji Hayashi ◽  
Toshihiko Izumi ◽  
Shunji Matsunaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document