Study of Subcritical Crack Growth and Long-Term Strength for Rock and Cementitious Material for Radioactive Waste Disposal

Author(s):  
Yoshitaka Nara ◽  
Daisuke Mori ◽  
Hitoshi Owada ◽  
Kunuhiko Kaneko
2010 ◽  
Vol 164 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Yoshitaka Nara ◽  
Masafumi Takada ◽  
Daisuke Mori ◽  
Hitoshi Owada ◽  
Tetsuro Yoneda ◽  
...  

2009 ◽  
Vol 58 (6) ◽  
pp. 525-532 ◽  
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

2010 ◽  
Vol 59 (3) ◽  
pp. 180-185 ◽  
Author(s):  
Yoshitaka NARA ◽  
Toshifumi IGARASHI ◽  
Naoki HIROYOSHI ◽  
Tetsuro YONEDA ◽  
Katsuhiko KANEKO

1984 ◽  
Vol 44 ◽  
Author(s):  
D. R. Mackenzie ◽  
R. E. Barletta ◽  
J. F. Smalley ◽  
C. R. Kempf ◽  
R. E. Davis

AbstractThe Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the original site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified.


2014 ◽  
Vol 97 ◽  
pp. 162-168 ◽  
Author(s):  
Marie Libert ◽  
Marta Kerber Schütz ◽  
Loïc Esnault ◽  
Damien Féron ◽  
Olivier Bildstein

2021 ◽  
Vol 1 ◽  
pp. 195-196
Author(s):  
Stephan Hotzel

Abstract. Most, if not all, national programmes for radioactive waste management pledge their overall commitment to safety or – in the case of radioactive waste disposal – to long-term safety. Therefore, it may be somewhat surprising to find that the term “safety” is hardly defined in these programs. The same holds for some of the core international guidance literature on the deep geological repository (DGR) “safety case” concept. With respect to stakeholder concern over the safety of geological disposal, it seems, however, advisable to seek common ground in the understanding of the idea of “safety”. Hotzel and Schröder (2018) reviewed the most relevant international guidance literature for explicitly or implicitly provided definitions of “safety” in the context of radioactive waste disposal. Based on this study – and on the finding that a practical, useful-for-all definition of “safety” is not provided in the scanned literature – they developed a tentative dictionary-style definition of “safety” that is suitable for everyday use in the DGR context. In the current contribution I embed, expand and update the 2018 study at both ends: As an enhanced introduction to the 2018 study, I lay out a basic concept of “sound” glossary definitions, namely glossary definitions being both practical and correct (and what this means). The thesis is that sound glossary definitions can facilitate mutual understanding between different stakeholder groups. As an update to the actual proposal for the definition of “safety” from the Hotzel and Schröder (2018) paper, that was presented and discussed at the Waste Management Conference 2018, I review the latest international guidance literature and the stakeholder concerns raised at the 2018 conference in order to present a revised definition. As a seed of discussion, it may help to eventually expose possible mismatches in the base assumptions of safety experts and other stakeholders and thereby support meaningful communication.


2009 ◽  
Vol 58 (7) ◽  
pp. errata_1
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document