scholarly journals PERFORMANCE ANALYSIS AND QOS FRAMEWORK OF FLY WİRELESS NETWORK

2019 ◽  
Vol 01 (02) ◽  
pp. 103-115
Author(s):  
Durai Pandian M

The spread out of wireless mesh network has made possible the extended range of communication network that are impractical due to environmental changes in a wired access point, these wireless mesh network does not require much competence to set it up as it can be set very fast at a cheap rate, and the conveyancing of messages in it happens by selecting the shortest path, these wireless mesh built-in with irrepressible and invulnerable identities come with an endurance to temporary congestion and individual node failure. This results in an architecture providing a better coverage, flaw indulgent with higher bandwidth compared to other wireless distributed systems. But faces the limitation on power conservation. The battery activated mesh nodes loses their resources on perception, processing and transmission of the data’s, though these batteries or accumulators comes with energy regaining capability still draw backs show up as their nature of energy regaining are unexposed. So the performance analysis of fly wireless network which proposes a uninterrupted wireless mesh networks aims at providing a best measure of performance that is the best quality of service on the meshwork by providing an improved energy gleaning using potency segregation (IGPS) which empowers each node to have self- contained accumulation of energy achieving heightened adaption with energy consumption kept at a minimum. The gross functioning of the proposed is examined on the bases of delay and packet loss to prove the quality of service acquired.

Author(s):  
Tsehay Admassu Assegie ◽  
Pramod Sekharan Nair

Wireless mesh networks (WMNs) are a new trend in wireless communication promising greater flexibility, reliability, and performance over traditional wireless local area networks (WLANs).Test bed analysis and emulation plays an important role in evaluation of wireless networks and node mobility is the prominent feature of next generation wireless network. In this paper we will focus on the models of wireless station mobility and discuss their importance within the software defined wireless mesh network performance evaluation. The existing mobility models for the next generation software defined wireless network will be explored. Finlay, we will present the mobility models in the mininet-Wi-Fi test bed, and evaluate the performance of the models


Author(s):  
Abira Banik ◽  
Abhishek Majumder

The scope of development and research in the field of wireless mesh networks (WMN) is wide open and the focus has also been widened from simple channel assignment to multicast routing further moving towards providing quality of service (QoS) to the end users. The nodes in the network are of multi radio multi channel (MRMC) model. The efficiency of the network is termed as quality of service. For providing the QoS to the end users different techniques have been evolved which caters situations as QoS provisioning in the channel assignment phase, QoS provisioning in the multicast routing phase, and QoS provisioning in the channel assignment and multicast routing phase. This chapter presents a detailed study of QoS provisioning in WMN. It also classifies the techniques as: QoS provision in channel assignment, QoS provision in multicast routing and QoS provision in channel assignment as well as multicast routing.


Quality of Service routing is constructing a route with enough resources for the QoS parameters. The routing protocols play a crucial part in providing quality service for Wireless Mesh Network (WMN). In this paper, the existing AODV protocol is enhanced to provide QoS in routing the packets as it may lead to node failure, congestion due to loss of energy and increased queue length. In the route construction process, initially the protocol focus on selecting a best forwarding node based on the node’s maximum net energy. Second, AODV is enhanced to construct a route by selecting a forwarding neighbor based on minimum queue length. Finally, the EEQ-AODV (Efficient Energy and Queue AODV) protocol selects the efficient path based on energy and queue length factors. The above mentioned tasks have been analyzed in Grid and Triangular Mesh topologies of Hybrid WMN architecture by considering the metrics Packet Delivery Ratio(PDR), dropped packets, average end-end delay, routing overhead and average throughput using NS-2. EEQ-AODV protocol is analyzed with the metrics energy consumed/packet and lifetime of the network


Author(s):  
Dicky Muhammad ◽  
Gita Indah Hapsari ◽  
Giva Andriana Mutiara

Today wireless technology grows rapidly, especially in the field of telecommunications and communications. Computer networks now widely utilizes wireless. Wireless Mesh Network is one of the method which is use to communicate computer wirelessly. One important factor in application of wireless network is how to extend wireless signal coverage. Wireless Distribution System is one way to expand the wireless network by mean of wireless interconnection of access point on the network IEEE 8022.11. This study suggests how to build a simple wireless computer network using WDS technology and describes connectivity performance and its signal coverage. The test result of connectivity performance shows that the connectivity between two computers work properly for reliability and multi SSID testing. However, the connectivity was not success in multichannel testing. Furthermore the test result of coverage shows that the range of wireless signal coverage reaches 39 meters with different circumstance room.


2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Pragasen Mudali ◽  
Matthew Olusegun Adigun

Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.


Author(s):  
Alexander Olave ◽  
Luis Felipe Valencia ◽  
Juan Carlos Cuéllar

Resumen Voz sobre IP, VoIP, es uno de los servicios con mayor desarrollo bajo plataformas inalámbricas; actualmente se ha iniciado su implementación como alternativa frente a la PSTN (red pública conmutada). El interés por VoIP radica en su relación costo-beneficio, ya que las organizaciones pueden utilizar la misma plataforma de su red de datos para transmitir voz. Por lo anterior, es importante que la organización tenga claro que, para garantizar el buen funcionamiento del servicio de VoIP, es decir para ofrecer QoS, se debe realizar la medición de parámetros que afectan la calidad del servicio como lo son: el retardo, la variación del retardo, el ancho de banda y la pérdida de paquetes. Este artículo analiza y valida los parámetros de QoS necesarios para garantizar el buen funcionamiento del servicio de VoIP sobre la red inalámbrica del campus de la Universidad Icesi. Se realizan pruebas en diferentes escenarios para mostrar que no solo factores como el retardo, y su variación, influyen en la calidad de servicio, sino que también la intensidad de la señal que recibe el cliente desde los puntos de acceso.Palabras Clave: Voz sobre IP, Calidad de servicio, Pérdida de paquetes, Retardo, Variación del Retardo, Intensidad de Señal. Abstract VoIP is one of the services that has been developing over under this type of wireless platforms and today has begun to implement as an alternative to the PSTN (Public Switched Telephone Network). The interest in VoIP is its cost-benefit ratio, and that organizations can use the same platform for their data network to transmit voice. Therefore it is important that the organization is clear that to ensure the smooth operation of the VoIP service, ie provide QoS, you must perform the measurement of parameters that affect the quality of service such as: delay, jitter, bandwidth, packet loss. In this paper we analyze and validate the QoS parameters needed to ensure the smooth operation of VoIP over wireless network on the Icesi University campus. We performed a series of tests in different scenarios to show that not only factors such as delay and jitter influencing the quality of service, but also the client signal strength received from of the AP (Access Point).Keywords: Voice over IP, Quality of service, Packet Loss, Delay, Delay variation, signal intensity.


Sign in / Sign up

Export Citation Format

Share Document