scholarly journals PENENTUAN POLA YANG SERING MUNCUL UNTUK PENJUALAN PUPUK MENGGUNAKAN ALGORITMA FP-GROWTH

2019 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Chandra Eri Firman

<p class="AbstractText">Aturan asosiasi dengan melakukan analisis suatu transaksi penjualan. Analisis transaksi penjualan bertujuan untuk merancang strategi yang efektif dengan memanfaatkan data transaksi penjualan produk pupuk yang dibeli oleh konsumen. Association rule adalah teknik data mining untuk mencari hubungan antar-item dalam suatu dataset yang ditentukan dengan menggunakan Algoritma FP-Growth. Frequent Pattern Growth (FP-Growth) adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sebuah kumpulan data. Algoritma FP-Growth menggunakan konsep pembangunan tree dalam pencarian frequent itemsets. Dari perhitungan nilai confidence dari rule yang dihasilkan menggunakan  Rapidminer-studio 7.3.0.</p><p class="AbstractText"> </p><p class="AbstractText"><strong>Kata Kunci</strong> : Data Mining, Assosiation Rule, FP-Growth, Penjualan Produk</p>

2020 ◽  
Vol 7 (2) ◽  
pp. 135-148
Author(s):  
Didi Supriyadi

Tingkat persaingan dan kompleksitas permasalahan penjualan pada perusahaan retail, menuntut setiap perusahaan retail untuk mampu berkompetisi dengan perusahaan lain. Salah satu yang dapat dilakukan adalah melalui pengambilan keputusan terkait penjualan yang lebih tepat dan efektif. Besarnya data transaksinonal penjualan perusahaan retail dapat dilakukan ekstraksi informasi yang bermanfaat. Metode yang dapat digunakan untuk menggali informasi adalah melalui penerapan association rule mining. Association Rule Mining merupakan suatu metode data mining yang berfokus pada pola transaksi dengan cara mengekstraksi asosiasi atau hubungan suatu kejadian. Keranjang belanja yang terdapat pada perusahaan retail yang terkomputerisasi merupakan cara terbaik untuk memberikan dukungan rekomendasi keputusan secara ilmiah dengan cara menentukan hubungan antara barang yang dibeli secara bersamaan dalam setiap transaksi. Algoritma FP-growth digunakan untuk menentukan himpunan dataset yang paling sering muncul (frequent itemset) pada sekeompok data. Penelitian ini menghasilkan nilai minimum support 0,1% dan nilai minimum confidence 60% jumlah rule yang dihasilkan berjumlah 116457, nilai minimum confidence 70% jumlah rule yang dihasilkan berjumlah 84086, dan nilai minimum confidence 80% jumlah rule yang dihasilkan berjumlah 48623 dari data yang diolah sebanyak 22191. Hasil rule ini dapat digunakan untuk strategi pemasaran produk. Nilai minimum support 0,1% dimana semakin besar nilai minimum confidence maka menghasilkan rule yang semakin sedikit.


2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Adi Nugroho Susanto Putro ◽  
Richardus Indra Gunawan

Bisnis di bidang tanaman sayuran mengalami peningkatan yang cukup signifikan beberapa tahun belakangan ini. Salah satu cara untuk menghasilkan produk sayuran yang berkualitas tinggi secara kontinyu adalah budidaya dengan sistem hidroponik [1]. Bisnis hidroponik mempunyai peluang yang baik akan tetapi mempunyai kelemahan yaitu karena tanaman segar tanpa obat dan pengawet maka sayur dan buah hidroponik tidak dapat bertahan lama. Maka jika sayur dan buah ini tidak segera terjual akan mengakibatkan kerugian. Data mining merupakan proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu. Apriori merupakan salah satu dari sepuluh algoritma yang paling berpengaruh dalam research community. Sejak algoritma Apriori pertama kali diperkenalkan, ada banyak upaya untuk merancang algoritma frequent itemset mining yang lebih efisien. Perbaikan yang paling menonjol pada Apriori menjadi sebuah metode yang disebut FP-Growth (frequent pattern growth) yang berhasil menghilangkan candidate generation [2]. Penelitian ini mengusulkan implementasi Algoritma FP-Growth dengan Software Open Source Weka untuk membantu menganalisa dan merancang katalog produk ritel hidroponik untuk mendorong buah atau sayur terjual secara bersama-sama. Dalam menentukan association rule, terdapat suatu interestingness measure (ukuran kepercayaan), yaitu support dan confidence. Penelitian ini, dengan menggunakan minimum suport 0,05 dan minimum confidence 0,9 menghasilkan 21 rule yang dapat digunakan sebagai strategi pemasaran PT. HAB.Kata Kunci: Algoritma FP-Growth, Strategi Pemasaran, Ritel Hidroponik.


Author(s):  
Putri Kurnia Handayani ◽  
Nanik Susanti

Data transaksi penjualan yang setiap hari bertambah menyebabkan banjir data dalam database. Data transaksi tersebut hanya digunakan sebagai laporan penjualan yang dicetak setiap bulannya. Data mining merupakan kegiatan menambang/menggali data untuk mengenali pola atau aturan tertentu dari sejumlah dataset yang sangat besar dan mempunyai dimensi tinggi. Asosiasi adalah teknik data mining untuk menemukan aturan suatu kombinasi item. Pola asosiasi yang berhasil diketahui dapat membantu pihak manajemen untuk mendukung pengambilan keputusan berkaitan dengan strategi penjualan, promosi produk, reward bagi pelanggan dan kendali stok. Penggalian pola asosiasi menggunakan algoritma FP-Growth melalui 3 tahap, yaitu pembangkitan conditional pattern base, conditional pattern tree dan pencarian frequent itemset. Metode perancangan sistem menggunakan UML. Tujuan penelitian ini adalah untuk menghasilkan sebuah sistem yang dapat mengenali pola asosiasi produk pada database.


2019 ◽  
Vol 8 (S2) ◽  
pp. 9-12
Author(s):  
R. Smeeta Mary ◽  
K. Perumal

In data mining finding out the frequent itemsets is one of the very essential topics. Data mining helps in identifying the best knowledge for different decision makers. Frequent itemset generation is the precondition and most time-consuming method for association rule mining. In this paper we suggest a new algorithm for frequent itemset detection that works with datasets in distributed manner. The proposed algorithm brings in a new method to find frequent itemset not including the necessitate to create candidate itemsets. The proposed approach could be implemented using horizontal representation for transaction datasets and allocating prime value. It explores all the frequent itemset that is present in the input and according to the support the maximum frequent itemset is identified. It was applied on different transactions database and compared with well-known algorithms: FP-Growth and Parallel Apriori with different support levels. The try out showed that the proposed algorithm attain major time improvement over both algorithms.


2020 ◽  
Vol 7 (2) ◽  
pp. 364-373
Author(s):  
Krisna Nata Wijaya

Dalam kegiatan transaksi jual beli di minimarket ataupun toko pemilik harus mengerti apa yang diinginkan komsumen dalam memberikan kenyaman berbelanja, terutama kemudahan dalam pemilihan barang yang disesuaikan dengan tata letak atau penempatan barang. Dengan menerapkan association rule pada data transaksi akan memudahkan pemilik dalam mengelolah informasi penjualan dan mencari itemset. Oleh karena itu, penelitian ini Melakukan analisis pola data transaksi penjualan dengan menerapkan metode asosiasi pada data mining. Selanjutnya dengan melakukan perbandingan algoritma Fp-Growth dan Eclat dengan minimum support dan confidence sebesar 0.01% untuk menentukan jumlah aturan yang terbentuk sebagai bahan pengambil keputusan yang ditunjukan untuk frekuensi keranjang belanja.


Sebatik ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Irwan Adji Darmawan ◽  
Muhammad Fakhri Randy ◽  
Imam Yunianto ◽  
Muhamad Malik Mutoffar ◽  
M Tio Putra Salis

Penyandang Masalah Kesejahteraan Sosial (PMKS) menjadi satu dari sekian masalah yang terdapat di daerah perkotaan, sebab dapat mengganggu pembangunan kota, ketertiban umum, keamanan dan stabilitas. Sejauh ini langkah yang dilakukan sementara masih terfokus dengan cara penanganan PMKS, masih belum mengarah untuk mencegah. Menentukan pola golongan PMKS merupakan salah satu cara yang dapat dilakukan. Algoritma Apriori memiliki fungsi untuk membantu menemukan pola yang terdapat pada data (frequent pattern mining) untuk menentukan frequent itemset yang menggunakan metode Association Rule dalam data mining. Dalam penghitungan secara manual yang dilakukan maka didapat pola kombinasi antara lain 3 rules yang memiliki nilai minimum support 15% dengan confidence tertinggi 100% menggunakan Algoritma Apriori. Dalam menguji Algoritma Apriori digunakan aplikasi RapidMiner. RapidMiner merupakan satu dari beberapa software pengolah data mining, misalnya menganalisis teks, mengekstrak pola data set kemudian dikombinasikan menggunakan metode statistik, database, dan kecerdasan buatan agar didapat informasi yang tinggi berasal dari olahan data. Hasil yang didapat dari pengujian perbandingan pola antar golongan PMKS. Dari pengujian menggunakan aplikasi RapidMiner dan penghitungan secara manual Algoritma Apriori, maka disimpulkan dengan kriteria pengujian, bahwa pola (rules) golongan dengan nilai confidence (c) penghitungan manual Algoritma Apriori dapat dibilang tidak mendekati hasil pengujian aplikasi RapidMiner, maka dapat dikatakan tingkat keakuratan pengujian rencah, hanya 37,5%.


Dinamik ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 20-28
Author(s):  
Kgs Muhammad Rizky Alditra Utama ◽  
Rusydi Umar ◽  
Anton Yudhana

Hasil dari penjualan pada toko kgs rizky motor pihak manajemen hanya melihat laporan jumlah barang terjual dan berapa banyak pendapatannya dilihat tanpa ada tindak lanjut untuk menentukan keputusan diwaktu yang akan datang. Dengan menggunakan metode Frequent Pattern Growth, pihak manajemen dapat mengambil keputusan barang mana yang membutuhkan persediaan yang lebih banyak dibandingkan dengan barang yang lain. Hasil penelitian yang telah dilakukan dengan adanya penerapan algoritma FP-Growth pada perhitungan manual dengan syarat batasan nilai support >35% dan nilai confidence 70%. Kemudian disimpulkan bahwa telah dilakukan penerapan algoritma FP-Growth untuk penentuan pada pola pembelian di Toko Kgs Rizky Motor. Dari dataset 15 transaksi penjualan produk sparepart yang menjadi frequent itemset adalah kombinasi itemset, terdapat 23 rules pola asosiasi dengan memenuhi nilai syarat batasan tersebut. Hasil association rule diperoleh terdapat 7 rules yang telah memenuhi nilai syarat batasan yaitu 1) jika membeli barang rantai motor (A04) maka membeli barang oli motor (A08) dengan nilai support = 40% dan nilai confidence = 78%, 2) jika membeli barang aksesoris motor (A07) maka membeli barang knalpot (A09) dengan nilai support = 40% dan nilai confidence = 75%, jika membeli barang oli motor (A09) maka membeli barang knalpot (A08) dengan nilai support = 47% dan nilai confidence = 88% dst. Sehingga  dapat membantu pada perusahaan toko kgs rizky motor mengetahui kemunculan pola item yang sering dibeli secara bersamaan atau dapat dilakukan mempromosikan produk item terbaik.


2020 ◽  
Vol 7 (2) ◽  
pp. 229
Author(s):  
Wirta Agustin ◽  
Yulya Muharmi

<p class="Judul2">Gelandangan dan pengemis salah satu masalah yang ada di daerah perkotaan, karena dapat mengganggu ketertiban umum, keamanan, stabilitas dan pembangunan kota. Upaya yang dilakukan saat ini masih fokus pada cara penanganan gelandangan dan pengemis, belum untuk pencegahan. Salah satu cara yang bisa dilakukan adalah dengan menentukan pola usia gelandangan dan pengemis. Algoritma Apriori sebuah metode <em>Association Rule</em> dalam data mining untuk menentukan frequent itemset yang berfungsi membantu menemukan pola dalam sebuah data (<em>frequent pattern mining</em>). Perhitungan manual menggunakan algoritma apriori, menghasilkan pola kombinasi sebanyak 3 rules dengan nilai minimum <em>support</em> sebesar 30% dan nilai <em>confidence</em> tertinggi sebesar 100%. Pengujian penerapan Algoritma Apriori menggunakan aplikasi RapidMiner. RapidMiner salah satu software pengolahan data mining, diantaranya analisis teks, mengekstrak pola-pola dari data set dan mengkombinasikannya dengan metode statistika, kecerdasan buatan, dan database untuk mendapatkan informasi bermutu tinggi dari data yang diolah. Hasil pengujian menunjukkan perbandingan pola usia gelandangan dan pengemis yang berpotensi menjadi gelandangan dan pengemis. Berdasarkan hasil pengujian aplikasi RapidMiner dan hasil perhitungan manual Algoritma Apriori, dapat disimpulkan sesuai kriteria pengujian, bahiwa pola (rules) usia dan nilai confidence (c) hasil perhitungan manual Algoritma Apriori tidak mendekati nilai hasil pengujian menggunakan aplikasi RapidMiner, maka tingkat keakuratan pengujian rendah, yaitu 37.5 %.</p><p class="Judul2"> </p><p class="Judul2"><strong><em>Abstract </em></strong></p><p class="Judul2"><strong> </strong></p><p><em>Homeless and beggars are one of the problems in urban areas as they possibly disrupt public order, security, stability and urban development. The efforts conducted are still focusing on managing the existing homeless and beggars instead of preventing the potential ones. One of the methods used for solving this problem is Algoritma Apriori which determines the age pattern of homeless and beggars. Apriori Algorithm is an Association Rule method in data mining to determine frequent item set that serves to help in finding patterns in a data (frequent pattern mining). The manual calculation through Apriori Algorithm obtains combination pattern of 3 rules with a minimum support value of 30% and the highest confidence value of 100%. These patterns were refences for the incharged department in precaution action of homeless and beggars arising numbers. Apriori Algorithm testing uses the RapidMiner application which is one of data mining processing software, including text analysis, extracting patterns from data sets and combining them with statistical methods, artificial intelligence, and databases to obtain high quality information from processed data. Based on the results of the said testing, it can be concluded that the level of accuracy test is low, i.e. 37.5%.</em></p>


Author(s):  
Latifa Suryani Nasution ◽  
Widiarti Rista Maya ◽  
Jufri Halim ◽  
Marsono M

Pencatatan data transaksi pembelian perak harian pada took emas dan perak Adi Saputra Tanjung belum dilakukan dengan rapi dan data transaksinya dicatat ke dalam buku besar masih secara manual  sehingga membuat pemilik toko kesulitan dalam menentukan barang apa saja yang laris di tokonya yang mengakibatkan promosi yang digunakan untuk meningkatkan penjualan di nilai kurang maksimal.Berdasarkan penelitian sebelumnya yang ditulis oleh Agus Nuryanto yaitu Penerapan Data Mining Menggunakan Algoritma Apriori Dan K-Means Untuk Meningkatkan Penjualan Toko Perhiasan Emas Setia Kawan, peneliti menganalisa pola pembelian perak untuk penemuan pola barang yang dibeli oleh pelanggan dengan harapan hasil penelitian dapat membantu rekomendasi promosi sehingga strategi pemasaran menjadi lebih tepat sasaran. algoritma yang digunakan adalah Frequent Pattern- Growth (FP-Growth) yaitu pengembangan dari metode Apriori yang merupakan salah satu alternatif untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sebuah kumpulan data dengan membangkitkan struktur data Tree atau disebut dengan Frequent Pattern Tree (FP-Tree).Hasil penelitian dari tahapan yang telah dilakukan, didapatkan nilai support sebesar 9% dan nilai confidence sebesar 30%  dengan jenis perak yang dibeli konsumen yaitu cincin putar, mainan kalung, kalung nama, cincin rantai pilin dan anting. Hasilnya dapat membantu pemilik toko untuk mengambil keputusan dalam penentuan stok perak yang perlu diperbanyak sehingga meningkatkan keuntungan dan meminimalisir kerugian.


Petir ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Wahyu Nur Setyo ◽  
Sukma Wardhana

At this time the growth of data occurs rapidly and rapidly along with the use of computer systems in various transactions. But this increasingly large volume of data has no meaning if it is not processed into a knowledge where this is done by data mining. Association rule or what is known as market based analysis is one type of data mining implementation. This study aims to find patterns of transaction data in the CV Cahaya Setya retail industry by using an Frequent Pattern Growth algorithm or also known as FP-Growth algorithm. FP-Growth aims to find all the set items that can be retrieved (often found) from the transaction database as efficiently as possible. The results of this study show that the pattern on the database of consumer transactions at CV Cahaya Setya retail industry is can be found using the FP-Growth algorithm then implementing it in the application.


Sign in / Sign up

Export Citation Format

Share Document