scholarly journals Solar Energy Induced Woody Biomass Conversion with a Semiconductor Photoelectrode

2021 ◽  
Vol 3 (5) ◽  
pp. 22-27
Author(s):  
Claire Y. Lee ◽  
Alicia Y. Leem ◽  
Hannah Park
2020 ◽  
Vol 8 (33) ◽  
pp. 12542-12553 ◽  
Author(s):  
Yunxuan Wang ◽  
Xianzhi Meng ◽  
Keunhong Jeong ◽  
Shuya Li ◽  
Gyu Leem ◽  
...  

Author(s):  
Niamh Ryan ◽  
Polina Yaseneva

Woody biomass could potentially become a viable raw material for the future sustainable chemical industry. For this, a suitable regulatory framework must exist, that would create favourable economic conditions for wood biorefineries. Such policies must be developed on the basis of scientific evidence—in this case, data supporting the environmental advantages of the bio-based feedstocks to the chemical industry. The most suitable methodology for comprehensive evaluation of environmental performance of technologies is life cycle assessment (LCA). In this review, the available LCA studies of woody biomass fractionation and conversion to bulk chemical feedstocks are critically evaluated. It has been revealed that the majority of the openly available studies do not contain transparent inventory data and, therefore, cannot be verified or re-used; studies containing inventory data are reported in this review. The lack of inventory data also prevents comparison between studies of the same processes performed with different evaluation methods or using different system boundaries. Recommendations are proposed on how to overcome issues of commercial data sensitivity by using black-box modelling when reporting environmental information. From several comparable LCA studies, it has been concluded that today the most environmentally favourable technology for wood biomass fractionation is organosolv. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)’.


Author(s):  
Zhe Zhu ◽  
Saqib Sohail Toor ◽  
Lasse Rosendahl ◽  
Donghong Yu ◽  
Guanyi Chen

In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 °C), with and without the presence of a catalyst. The effects of catalyst and biomass type (woody and non-woody) on the biomass conversion, bio-crude yield, and the qualities of products were studied. The results suggested that the addition of potassium carbonate as a catalyst showed a positive effect on bio-crude yield, especially for wood, where it was enhanced to 47.48 wt%. Macroalgae showed a higher biomass conversion and a lower bio-crude yield than other woody biomass investigated in the present study, irrespective of whether the catalyst was used. Meanwhile, the effect of catalyst on macroalgae was less significant than that of woody biomass. The heating values and thermal stability of all bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of a catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when they were treated in hot compressed water at 300 °C, while conversion of bark had not completed yet.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Paul Lichty ◽  
Christopher Perkins ◽  
Bryan Woodruff ◽  
Carl Bingham ◽  
Alan Weimer

High temperature biomass gasification has been performed in a prototype concentrated solar reactor. Gasification of biomass at high temperatures has many advantages compared with historical methods of producing fuels. Enhancements in overall conversion, product composition ratios, and tar reduction are achievable at temperatures greater than 1000°C. Furthermore, the utilization of concentrated solar energy to drive these reactions eliminates the need to consume a portion of the product stream for heating and some of the solar energy is stored as chemical energy in the product stream. Experiments to determine the effects of temperature, gas flow rate, and feed type were conducted at the high flux solar furnace at the National Renewable Energy Laboratory, Golden, CO. These experiments were conducted in a reflective cavity multitube prototype reactor. Biomass type was found to be the only significant factor within a 95% confidence interval. Biomass conversion as high as 68% was achieved on sun. Construction and design considerations of the prototype reactor are discussed as well as initial performance results.


2016 ◽  
Vol 129 ◽  
pp. 305-318 ◽  
Author(s):  
Stefano Moret ◽  
Emanuela Peduzzi ◽  
Léda Gerber ◽  
François Maréchal

Author(s):  
Thomas E. Amidon ◽  
Biljana Bujanovic ◽  
Shijie Liu ◽  
Asif Hasan ◽  
Joel R. Howard

Sign in / Sign up

Export Citation Format

Share Document