scholarly journals Extending the applicability of Newton’s method using Wang’s– Smale’s α–theory

2017 ◽  
Vol 33 (1) ◽  
pp. 27-33
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
SANTHOSH GEORGE ◽  

We improve semilocal convergence results for Newton’s method by defining a more precise domain where the Newton iterate lies than in earlier studies using the Smale’s α– theory. These improvements are obtained under the same computational cost. Numerical examples are also presented in this study to show that the earlier results cannot apply but the new results can apply to solve equations.

2013 ◽  
Vol 63 (3) ◽  
Author(s):  
Ioannis Argyros ◽  
Saïd Hilout

AbstractWe provide new local and semilocal convergence results for Newton’s method in a Banach space. The sufficient convergence conditions do not include the Lipschitz constant usually associated with Newton’s method. Numerical examples demonstrating the expansion of Newton’s method are also provided in this study.


2016 ◽  
Vol 14 (02) ◽  
pp. 303-319
Author(s):  
Ioannis K. Argyros ◽  
Á. Alberto Magreñán

We present a semi-local convergence analysis of Newton’s method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the second Fréchet derivatives, we provide under the same computational cost a new and more precise convergence analysis than in earlier studies by Huang [A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211–217] and Gutiérrez [A new semilocal convergence theorem for Newton’s method, J. Comput. Appl. Math. 79 (1997) 131–145]. Numerical examples where the old convergence criteria cannot apply to solve nonlinear equations but the new convergence criteria are satisfied are also presented at the concluding section of this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
I. K. Argyros ◽  
D. González ◽  
Á. A. Magreñán

We present a semilocal convergence analysis for a uniparametric family of efficient secant-like methods (including the secant and Kurchatov method as special cases) in a Banach space setting (Ezquerro et al., 2000–2012). Using our idea of recurrent functions and tighter majorizing sequences, we provide convergence results under the same or less computational cost than the ones of Ezquerro et al., (2013, 2010, and 2012) and Hernández et al., (2000, 2005, and 2002) and with the following advantages: weaker sufficient convergence conditions, tighter error estimates on the distances involved, and at least as precise information on the location of the solution. Numerical examples validating our theoretical results are also provided in this study.


2012 ◽  
Vol 220-223 ◽  
pp. 2658-2661
Author(s):  
Zhong Yong Hu ◽  
Liang Fang ◽  
Lian Zhong Li

We present a new modified Newton's method with third-order convergence and compare it with the Jarratt method, which is of fourth-order. Based on this new method, we obtain a family of Newton-type methods, which converge cubically. Numerical examples show that the presented method can compete with Newton's method and other known third-order modifications of Newton's method.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450007
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a semilocal convergence analysis of Newton's method for sections on Riemannian manifolds. Using the notion of a 2-piece L-average Lipschitz condition introduced in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] in combination with the weaker center 2-piece L1-average Lipschitz condition given by us in this paper, we provide a tighter convergence analysis than the one given in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] which in turn has improved the works in earlier studies such as [R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal.22 (2002) 359–390; F. Alvarez, J. Bolte and J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math.8 (2008) 197–226; J. P. Dedieu, P. Priouret and G. Malajovich, Newton's method on Riemannian manifolds: Covariant α-theory, IMA J. Numer. Anal.23 (2003) 395–419].


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 103 ◽  
Author(s):  
Cristina Amorós ◽  
Ioannis K. Argyros ◽  
Daniel González ◽  
Ángel Alberto Magreñán ◽  
Samundra Regmi ◽  
...  

There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability of the methods. The new idea involves the construction of a tighter set than the ones used before also containing the iterates leading to at least as tight Lipschitz parameters and consequently a finer local as well as a semi-local convergence analysis. We used Newton’s method to demonstrate our technique. However, our technique can be used to extend the applicability of other methods too in an analogous manner. In particular, the new information related to the location of the solution improves the one in previous studies. This work also includes numerical examples that validate the proven results.


2015 ◽  
Vol 34 (2) ◽  
pp. 197-211
Author(s):  
D. Sbibih ◽  
Abdelhafid Serghini ◽  
A. Tijini ◽  
A. Zidna

In this paper, we describe an iterative method for approximating asimple zero $z$ of a real defined function. This method is aessentially based on the idea to extend Newton's method to be theinverse quadratic interpolation. We prove that for a sufficientlysmooth function $f$ in a neighborhood of $z$ the order of theconvergence is quartic. Using Mathematica with its high precisioncompatibility, we present some numerical examples to confirm thetheoretical results and to compare our method with the others givenin the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


Sign in / Sign up

Export Citation Format

Share Document