scholarly journals Testing artificial neural network for hand gesture recognition

2013 ◽  
Vol 22 (2) ◽  
pp. 223-228
Author(s):  
JOZSEF SUTO ◽  
◽  
STEFAN ONIGA ◽  

Neural networks are well applicable for gesture recognition. In this article we want to present the result of an artificial feed forward network for a simplified hand gesture recognition problem. In neural networks, the learning algorithm is very important because the performance of neural network depends on it. One of the most known learning algorithm is the backpropagation. There are some mathematical software which provides acceptable result for a given problem by a backpropagation based network, but in some cases a high-level programming language implemented program can provide better solution. The main topics of the article cover the structure of the test environment, the mathematical background of the implemented methods, some programming remarks and the test results.

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3827 ◽  
Author(s):  
Minwoo Kim ◽  
Jaechan Cho ◽  
Seongjoo Lee ◽  
Yunho Jung

We propose an efficient hand gesture recognition (HGR) algorithm, which can cope with time-dependent data from an inertial measurement unit (IMU) sensor and support real-time learning for various human-machine interface (HMI) applications. Although the data extracted from IMU sensors are time-dependent, most existing HGR algorithms do not consider this characteristic, which results in the degradation of recognition performance. Because the dynamic time warping (DTW) technique considers the time-dependent characteristic of IMU sensor data, the recognition performance of DTW-based algorithms is better than that of others. However, the DTW technique requires a very complex learning algorithm, which makes it difficult to support real-time learning. To solve this issue, the proposed HGR algorithm is based on a restricted column energy (RCE) neural network, which has a very simple learning scheme in which neurons are activated when necessary. By replacing the metric calculation of the RCE neural network with DTW distance, the proposed algorithm exhibits superior recognition performance for time-dependent sensor data while supporting real-time learning. Our verification results on a field-programmable gate array (FPGA)-based test platform show that the proposed HGR algorithm can achieve a recognition accuracy of 98.6% and supports real-time learning and recognition at an operating frequency of 150 MHz.


2020 ◽  
Vol 10 (2) ◽  
pp. 722 ◽  
Author(s):  
Dinh-Son Tran ◽  
Ngoc-Huynh Ho ◽  
Hyung-Jeong Yang ◽  
Eu-Tteum Baek ◽  
Soo-Hyung Kim ◽  
...  

Using hand gestures is a natural method of interaction between humans and computers. We use gestures to express meaning and thoughts in our everyday conversations. Gesture-based interfaces are used in many applications in a variety of fields, such as smartphones, televisions (TVs), video gaming, and so on. With advancements in technology, hand gesture recognition is becoming an increasingly promising and attractive technique in human–computer interaction. In this paper, we propose a novel method for fingertip detection and hand gesture recognition in real-time using an RGB-D camera and a 3D convolution neural network (3DCNN). This system can accurately and robustly extract fingertip locations and recognize gestures in real-time. We demonstrate the accurateness and robustness of the interface by evaluating hand gesture recognition across a variety of gestures. In addition, we develop a tool to manipulate computer programs to show the possibility of using hand gesture recognition. The experimental results showed that our system has a high level of accuracy of hand gesture recognition. This is thus considered to be a good approach to a gesture-based interface for human–computer interaction by hand in the future.


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2540
Author(s):  
Zhipeng Yu ◽  
Jianghai Zhao ◽  
Yucheng Wang ◽  
Linglong He ◽  
Shaonan Wang

In recent years, surface electromyography (sEMG)-based human–computer interaction has been developed to improve the quality of life for people. Gesture recognition based on the instantaneous values of sEMG has the advantages of accurate prediction and low latency. However, the low generalization ability of the hand gesture recognition method limits its application to new subjects and new hand gestures, and brings a heavy training burden. For this reason, based on a convolutional neural network, a transfer learning (TL) strategy for instantaneous gesture recognition is proposed to improve the generalization performance of the target network. CapgMyo and NinaPro DB1 are used to evaluate the validity of our proposed strategy. Compared with the non-transfer learning (non-TL) strategy, our proposed strategy improves the average accuracy of new subject and new gesture recognition by 18.7% and 8.74%, respectively, when up to three repeated gestures are employed. The TL strategy reduces the training time by a factor of three. Experiments verify the transferability of spatial features and the validity of the proposed strategy in improving the recognition accuracy of new subjects and new gestures, and reducing the training burden. The proposed TL strategy provides an effective way of improving the generalization ability of the gesture recognition system.


2021 ◽  
Vol 102 ◽  
pp. 04009
Author(s):  
Naoto Ageishi ◽  
Fukuchi Tomohide ◽  
Abderazek Ben Abdallah

Hand gestures are a kind of nonverbal communication in which visible bodily actions are used to communicate important messages. Recently, hand gesture recognition has received significant attention from the research community for various applications, including advanced driver assistance systems, prosthetic, and robotic control. Therefore, accurate and fast classification of hand gesture is required. In this research, we created a deep neural network as the first step to develop a real-time camera-only hand gesture recognition system without electroencephalogram (EEG) signals. We present the system software architecture in a fair amount of details. The proposed system was able to recognize hand signs with an accuracy of 97.31%.


Sign in / Sign up

Export Citation Format

Share Document