scholarly journals On Planar Mixed Hypergraphs

10.37236/1579 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Zdeněk Dvořák ◽  
Daniel Král'

A mixed hypergraph $H$ is a triple $(V,{\cal C},{\cal D})$ where $V$ is its vertex set and ${\cal C}$ and ${\cal D}$ are families of subsets of $V$, ${\cal C}$–edges and ${\cal D}$–edges. A mixed hypergraph is a bihypergraph iff ${\cal C}={\cal D}$. A hypergraph is planar if its bipartite incidence graph is planar. A vertex coloring of $H$ is proper if each ${\cal C}$–edge contains two vertices with the same color and each ${\cal D}$–edge contains two vertices with different colors. The set of all $k$'s for which there exists a proper coloring using exactly $k$ colors is the feasible set of $H$; the feasible set is called gap-free if it is an interval. The minimum (maximum) number of the feasible set is called a lower (upper) chromatic number. We prove that the feasible set of any planar mixed hypergraph without edges of size two and with an edge of size at least four is gap-free. We further prove that a planar mixed hypergraph with at most two ${\cal D}$–edges of size two is two-colorable. We describe a polynomial-time algorithm to decide whether the lower chromatic number of a planar mixed hypergraph equals two. We prove that it is NP-complete to find the upper chromatic number of a mixed hypergraph even for 3-uniform planar bihypergraphs. In order to prove the latter statement, we prove that it is NP-complete to determine whether a planar 3-regular bridgeless graph contains a $2$-factor with at least a given number of components.


2019 ◽  
Vol 17 (2) ◽  
pp. 257-263
Author(s):  
Ruzayn Quaddoura

A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is monochromatic. The hypergraph 2- Coloring Problem is the question whether a given hypergraph is 2-colorable. It is known that deciding the 2-colorability of hypergraphs is NP-complete even for hypergraphs whose hyperedges have size at most 3. In this paper, we present a polynomial time algorithm for deciding if a hypergraph, whose incidence graph is P_8-free and has a dominating set isomorphic to C_8, is 2-colorable or not. This algorithm is semi generalization of the 2-colorability algorithm for hypergraph, whose incidence graph is P_7-free presented by Camby and Schaudt.



2007 ◽  
Vol 72 (4) ◽  
pp. 1197-1203
Author(s):  
Rick Statman

AbstractWe consider three problems concerning alpha conversion of closed terms (combinators).(1) Given a combinator M find the an alpha convert of M with a smallest number of distinct variables.(2) Given two alpha convertible combinators M and N find a shortest alpha conversion of M to N.(3) Given two alpha convertible combinators M and N find an alpha conversion of M to N which uses the smallest number of variables possible along the way.We obtain the following results.(1) There is a polynomial time algorithm for solving problem (1). It is reducible to vertex coloring of chordal graphs.(2) Problem (2) is co-NP complete (in recognition form). The general feedback vertex set problem for digraphs is reducible to problem (2).(3) At most one variable besides those occurring in both M and N is necessary. This appears to be the folklore but the proof is not familiar. A polynomial time algorithm for the alpha conversion of M to N using at most one extra variable is given.There is a tradeoff between solutions to problem (2) and problem (3) which we do not fully understand.



10.37236/1772 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Král

A mixed hypergraph $H$ is a triple $(V,{\cal C},{\cal D})$ where $V$ is the vertex set and ${\cal C}$ and ${\cal D}$ are families of subsets of $V$, called ${\cal C}$-edges and ${\cal D}$-edges. A vertex coloring of $H$ is proper if each ${\cal C}$-edge contains two vertices with the same color and each ${\cal D}$-edge contains two vertices with different colors. The spectrum of $H$ is a vector $(r_1,\ldots,r_m)$ such that there exist exactly $r_i$ different colorings using exactly $i$ colors, $r_m\ge 1$ and there is no coloring using more than $m$ colors. The feasible set of $H$ is the set of all $i$'s such that $r_i\ne 0$. We construct a mixed hypergraph with $O(\sum_i\log r_i)$ vertices whose spectrum is equal to $(r_1,\ldots,r_m)$ for each vector of non-negative integers with $r_1=0$. We further prove that for any fixed finite sets of positive integers $A_1\subset A_2$ ($1\notin A_2$), it is NP-hard to decide whether the feasible set of a given mixed hypergraph is equal to $A_2$ even if it is promised that it is either $A_1$ or $A_2$. This fact has several interesting corollaries, e.g., that deciding whether a feasible set of a mixed hypergraph is gap-free is both NP-hard and coNP-hard.



Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3148
Author(s):  
Babak Samadi ◽  
Ismael G. Yero

This work is aimed to continue studying the packing sets of digraphs via the perspective of partitioning the vertex set of a digraph into packing sets (which can be interpreted as a type of vertex coloring of digraphs) and focused on finding the minimum cardinality among all packing partitions for a given digraph D, called the packing partition number of D. Some lower and upper bounds on this parameter are proven, and their exact values for directed trees are given in this paper. In the case of directed trees, the proof results in a polynomial-time algorithm for finding a packing partition of minimum cardinality. We also consider this parameter in digraph products. In particular, a complete solution to this case is presented when dealing with the rooted products.



Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.



2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.



2015 ◽  
Vol 14 (09) ◽  
pp. 1540011 ◽  
Author(s):  
I. Bermejo ◽  
I. García-Marco ◽  
E. Reyes

Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph G, checks whether its toric ideal PG is a complete intersection or not. Whenever PG is a complete intersection, the algorithm also returns a minimal set of generators of PG. Moreover, we prove that if G is a connected graph and PG is a complete intersection, then there exist two induced subgraphs R and C of G such that the vertex set V(G) of G is the disjoint union of V(R) and V(C), where R is a bipartite ring graph and C is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if R is 2-connected and C is connected, we list the families of graphs whose toric ideals are complete intersection.



10.37236/104 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
E. R. Vaughan

Gerechte designs are a specialisation of latin squares. A gerechte design is an $n\times n$ array containing the symbols $\{1,\dots,n\}$, together with a partition of the cells of the array into $n$ regions of $n$ cells each. The entries in the cells are required to be such that each row, column and region contains each symbol exactly once. We show that the problem of deciding if a gerechte design exists for a given partition of the cells is NP-complete. It follows that there is no polynomial time algorithm for finding gerechte designs with specified partitions unless P=NP.



2021 ◽  
Author(s):  
Yasaman KalantarMotamedi

P vs NP is one of the open and most important mathematics/computer science questions that has not been answered since it was raised in 1971 despite its importance and a quest for a solution since 2000. P vs NP is a class of problems that no polynomial time algorithm exists for any. If any of the problems in the class gets solved in polynomial time, all can be solved as the problems are translatable to each other. One of the famous problems of this kind is Hamiltonian cycle. Here we propose a polynomial time algorithm with rigorous proof that it always finds a solution if there exists one. It is expected that this solution would address all problems in the class and have a major impact in diverse fields including computer science, engineering, biology, and cryptography.



Author(s):  
Naser T Sardari

Abstract By assuming some widely believed arithmetic conjectures, we show that the task of accepting a number that is representable as a sum of $d\geq 2$ squares subjected to given congruence conditions is NP-complete. On the other hand, we develop and implement a deterministic polynomial-time algorithm that represents a number as a sum of four squares with some restricted congruence conditions, by assuming a polynomial-time algorithm for factoring integers and Conjecture 1.1. As an application, we develop and implement a deterministic polynomial-time algorithm for navigating Lubotzky, Phillips, Sarnak (LPS) Ramanujan graphs, under the same assumptions.



Sign in / Sign up

Export Citation Format

Share Document