scholarly journals Tetravalent Non-Normal Cayley Graphs of Order $4p$

10.37236/207 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin-Xin Zhou

A Cayley graph ${\rm Cay}(G,S)$ on a group $G$ is said to be normal if the right regular representation $R(G)$ of $G$ is normal in the full automorphism group of ${\rm Cay}(G,S)$. In this paper, all connected tetravalent non-normal Cayley graphs of order $4p$ are constructed explicitly for each prime $p$. As a result, there are fifteen sporadic and eleven infinite families of tetravalent non-normal Cayley graphs of order $4p$.

2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


2017 ◽  
Vol 24 (04) ◽  
pp. 541-550
Author(s):  
Xueyi Huang ◽  
Qiongxiang Huang ◽  
Lu Lu

Let Sndenote the symmetric group of degree n with n ≥ 3, S = { cn= (1 2 ⋯ n), [Formula: see text], (1 2)} and Γn= Cay(Sn, S) be the Cayley graph on Snwith respect to S. In this paper, we show that Γn(n ≥ 13) is a normal Cayley graph, and that the full automorphism group of Γnis equal to Aut(Γn) = R(Sn) ⋊ 〈Inn(ϕ) ≅ Sn× ℤ2, where R(Sn) is the right regular representation of Sn, ϕ = (1 2)(3 n)(4 n−1)(5 n−2) ⋯ (∊ Sn), and Inn(ϕ) is the inner isomorphism of Sninduced by ϕ.


2007 ◽  
Vol 14 (02) ◽  
pp. 351-359 ◽  
Author(s):  
Chuixiang Zhou ◽  
Yan-Quan Feng

For a prime p, let D4p be the dihedral group 〈a,b | a2p = b2 = 1, b-1ab = a-1〉 of order 4p, and Cay (G,S) a connected cubic Cayley graph of order 4p. In this paper, it is shown that the automorphism group Aut ( Cay (G,S)) of Cay (G,S) is the semiproduct R(G) ⋊ Aut (G,S), where R(G) is the right regular representation of G and Aut (G,S) = {α ∈ Aut (G) | Sα = S}, except either G = D4p (p ≥ 3), Sβ = {b,ab,apb} for some β ∈ Aut (D4p) and [Formula: see text], or Cay (G,S) is isomorphic to the three-dimensional hypercube Q3[Formula: see text] and G = ℤ4 × ℤ2 or D8.


2020 ◽  
Vol 18 (1) ◽  
pp. 595-602
Author(s):  
Jiangmin Pan

Abstract A Cayley graph \Gamma on a group G is called a dual Cayley graph on G if the left regular representation of G is a subgroup of the automorphism group of \Gamma (note that the right regular representation of G is always an automorphism group of \Gamma ). In this article, we study finite dual Cayley graphs regarding identification, construction, transitivity and such graphs with automorphism groups as small as possible. A few problems worth further research are also proposed.


2019 ◽  
Vol 17 (1) ◽  
pp. 513-518
Author(s):  
Hailin Liu

Abstract A Cayley graph Γ is said to be arc-transitive if its full automorphism group AutΓ is transitive on the arc set of Γ. In this paper we give a characterization of pentavalent arc-transitive Cayley graphs on a class of Frobenius groups with soluble vertex stabilizer.


2016 ◽  
Vol 93 (3) ◽  
pp. 441-446 ◽  
Author(s):  
BO LING ◽  
BEN GONG LOU

Zhou and Feng [‘On symmetric graphs of valency five’, Discrete Math. 310 (2010), 1725–1732] proved that all connected pentavalent 1-transitive Cayley graphs of finite nonabelian simple groups are normal. We construct an example of a nonnormal 2-arc transitive pentavalent symmetric Cayley graph on the alternating group $\text{A}_{39}$. Furthermore, we show that the full automorphism group of this graph is isomorphic to the alternating group $\text{A}_{40}$.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2935
Author(s):  
Bo Ling ◽  
Wanting Li ◽  
Bengong Lou

A Cayley graph Γ=Cay(G,S) is said to be normal if the base group G is normal in AutΓ. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to A120.


2011 ◽  
Vol 54 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Xiao-Hui Hua ◽  
Yan-Quan Feng

AbstractLet Γ be a graph and let G be a vertex-transitive subgroup of the full automorphism group Aut(Γ) of Γ. The graph Γ is called G-normal if G is normal in Aut(Γ). In particular, a Cayley graph Cay(G, S) on a group G with respect to S is normal if the Cayley graph is R(G)-normal, where R(G) is the right regular representation of G. Let T be a non-abelian simple group and let G = Tℓ with ℓ ≥ 1. We prove that if every connected T-vertex-transitive cubic symmetric graph is T-normal, then every connected G-vertex-transitive cubic symmetric graph is G-normal. This result, among others, implies that a connected cubic symmetric Cayley graph on G is normal except for T ≅ A47 and a connected cubic G-symmetric graph is G-normal except for T ≅ A7, A15 or PSL(4, 2).


10.37236/685 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun-Ping Deng ◽  
Xiao-Dong Zhang

In this paper, we prove that the full automorphism group of the derangement graph $\Gamma_n$ ($n\geq3$) is equal to $(R(S_n)\rtimes\hbox{Inn} (S_n))\rtimes Z_2$, where $R(S_n)$ and $\hbox{Inn} (S_n)$ are the right regular representation and the inner automorphism group of $S_n$ respectively, and $Z_2=\langle\varphi\rangle$ with the mapping $\varphi:$ $\sigma^{\varphi}=\sigma^{-1},\,\forall\,\sigma\in S_n.$ Moreover, all orbits on the edge set of $\Gamma_n$ ($n\geq3$) are determined.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


Sign in / Sign up

Export Citation Format

Share Document