scholarly journals Minimum-Weight Edge Discriminators in Hypergraphs

10.37236/3551 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Bhaswar B. Bhattacharya ◽  
Sayantan Das ◽  
Shirshendu Ganguly

In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, a function $\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\}$ is said to be an edge-discriminator on $\mathcal H$ if $\sum_{v\in E_i}{\lambda(v)}>0$, for all hyperedges $E_i\in \mathscr E$, and $\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}$, for every two distinct hyperedges $E_i, E_j \in \mathscr E$. An optimal edge-discriminator on $\mathcal H$, to be denoted by $\lambda_\mathcal H$, is an edge-discriminator on $\mathcal H$ satisfying $\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}$, where the minimum is taken over all edge-discriminators on $\mathcal H$.  We prove that any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$,  with $|\mathscr E|=m$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq m(m+1)/2$, and the equality holds if and only if the elements of $\mathscr E$ are mutually disjoint. For $r$-uniform hypergraphs $\mathcal H=(\mathcal V, \mathscr E)$, it follows from earlier results on Sidon sequences that $\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1})$, and the bound is attained up to a constant factor by the complete $r$-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m~(\geq 3)$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=m(m+1)/2-1$. This shows that all integer values between $m$ and $m(m+1)/2$ cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions.

2014 ◽  
Vol 672-674 ◽  
pp. 1935-1939
Author(s):  
Guan Ru Li ◽  
Yi Ming Lei ◽  
Jirimutu

About the Katona-Kierstead definition of a Hamiltonian cycles in a uniform hypergraph, a decomposition of complete k-uniform hypergraph Kn(k) into Hamiltonian cycles studied by Bailey-Stevens and Meszka-Rosa. For n≡2,4,5 (mod 6), we design algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of Kn(3) into 5-cycles has been presented for all admissible n≤17, and for all n=4m +1, m is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we use the method of edge-partition and cycle sequence proposed by Jirimutu and Wang. We find a decomposition of K20(3) into 5-cycles.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


10.37236/2631 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
András Gyárfás ◽  
Gábor N. Sárközy

Here we address the problem to partition edge colored hypergraphs by monochromatic paths and cycles generalizing a well-known similar problem for graphs.We show that $r$-colored $r$-uniform complete hypergraphs can be partitioned into monochromatic Berge-paths of distinct colors. Also, apart from $2k-5$ vertices, $2$-colored $k$-uniform hypergraphs can be partitioned into two monochromatic loose paths.In general, we prove that in any $r$-coloring of a $k$-uniform hypergraph there is a partition of the vertex set intomonochromatic loose cycles such that their number depends only on $r$ and $k$.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Ke Zhang ◽  
Haixing Zhao ◽  
Zhonglin Ye ◽  
Yu Zhu ◽  
Liang Wei

A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k   ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is a G H T whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an r -uniform G H T on n vertices has at least 2 n / ( r + 1 ) edges and it has at most n − r + 1 edges if r ≥ 3   and   n ≥ 3 , and the lower and upper bounds on the edge number are sharp. We then discuss the case that G H T − E has exactly k   ( 2 ≤ k ≤ r − 1 ) components.


Author(s):  
Jie Han ◽  
Allan Lo ◽  
Nicolás Sanhueza-Matamala

Abstract A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$ . The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest. For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$ , there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$ , every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$ -tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


2017 ◽  
Vol 27 (4) ◽  
pp. 531-538 ◽  
Author(s):  
DWIGHT DUFFUS ◽  
BILL KAY ◽  
VOJTĚCH RÖDL

An oriented k-uniform hypergraph (a family of ordered k-sets) has the ordering property (or Property O) if, for every linear order of the vertex set, there is some edge oriented consistently with the linear order. We find bounds on the minimum number of edges in a hypergraph with Property O.


2017 ◽  
Vol 09 (06) ◽  
pp. 1750072 ◽  
Author(s):  
Yi Zhang ◽  
Mei Lu

A matching of a [Formula: see text]-uniform hypergraph is a set of pairwise disjoint edges. A [Formula: see text]-matching in a [Formula: see text]-uniform hypergraph [Formula: see text] is a matching of size [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-uniform hypergraph of order [Formula: see text] and [Formula: see text]. If [Formula: see text] for any two adjacent vertices [Formula: see text], and [Formula: see text], then [Formula: see text] contains a [Formula: see text]-matching. This result is an extension of a work of Bollobás, Daykin and Erdős [Sets of independent edges of a hypergraph, Quart. J. Math. Oxford 21 (1976) 25–32].


2014 ◽  
Vol 24 (5) ◽  
pp. 723-732 ◽  
Author(s):  
JIE HAN

LetHbe ak-uniform hypergraph onnvertices wherenis a sufficiently large integer not divisible byk. We prove that if the minimum (k− 1)-degree ofHis at least ⌊n/k⌋, thenHcontains a matching with ⌊n/k⌋ edges. This confirms a conjecture of Rödl, Ruciński and Szemerédi [13], who proved that minimum (k− 1)-degreen/k+O(logn) suffices. More generally, we show thatHcontains a matching of sizedif its minimum codegree isd<n/k, which is also best possible.


Sign in / Sign up

Export Citation Format

Share Document