scholarly journals The Degree-Diameter Problem for Sparse Graph Classes

10.37236/4313 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Guillermo Pineda-Villavicencio ◽  
David R. Wood

The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree $\Delta$ and diameter $k$. For fixed $k$, the answer is $\Theta(\Delta^k)$. We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is $\Theta(\Delta^{k-1})$, and for graphs of bounded arboricity the answer is $\Theta(\Delta^{\lfloor k/2\rfloor})$, in both cases for fixed $k$. For graphs of given treewidth, we determine the maximum number of vertices up to a constant factor. Other precise bounds are given for graphs embeddable on a given surface and apex-minor-free graphs.

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


10.37236/5519 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Michał Pilipczuk ◽  
Szymon Toruńczyk

The notion of nowhere denseness is one of the central concepts of the recently developed theory of sparse graphs. We study the properties of nowhere dense graph classes by investigating appropriate limit objects defined using the ultraproduct construction. It appears that different equivalent definitions of nowhere denseness, for example via quasi-wideness or the splitter game, correspond to natural notions for the limit objects that are conceptually simpler and allow for less technically involved reasonings.


10.37236/6815 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
François Dross ◽  
Mickael Montassier ◽  
Alexandre Pinlou

An $({\cal I},{\cal F}_d)$-partition of a graph is a partition of the vertices of the graph into two sets $I$ and $F$, such that $I$ is an independent set and $F$ induces a forest of maximum degree at most $d$. We show that for all $M<3$ and $d \ge \frac{2}{3-M} - 2$, if a graph has maximum average degree less than $M$, then it has an $({\cal I},{\cal F}_d)$-partition. Additionally, we prove that for all $\frac{8}{3} \le M < 3$ and $d \ge \frac{1}{3-M}$, if a graph has maximum average degree less than $M$ then it has an $({\cal I},{\cal F}_d)$-partition. It follows that planar graphs with girth at least $7$ (resp. $8$, $10$) admit an $({\cal I},{\cal F}_5)$-partition (resp. $({\cal I},{\cal F}_3)$-partition, $({\cal I},{\cal F}_2)$-partition).


10.37236/8847 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Sergey Norin ◽  
Bruce Reed ◽  
Andrew Thomason ◽  
David R. Wood

We show that for sufficiently large $d$ and for $t\geq d+1$,  there is a graph $G$ with average degree $(1-\varepsilon)\lambda  t \sqrt{\ln d}$ such that almost every graph $H$ with $t$ vertices and average degree $d$ is not a minor of $G$, where $\lambda=0.63817\dots$ is an explicitly defined constant. This generalises analogous results for complete graphs by Thomason (2001) and for general dense graphs by Myers and Thomason (2005). It also shows that an upper bound for sparse graphs by Reed and Wood (2016) is best possible up to a constant factor.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850045
Author(s):  
Hongping Ma ◽  
Xiaoxue Hu ◽  
Jiangxu Kong ◽  
Murong Xu

An [Formula: see text]-hued coloring is a proper coloring such that the number of colors used by the neighbors of [Formula: see text] is at least [Formula: see text]. A linear [Formula: see text]-hued coloring is an [Formula: see text]-hued coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list [Formula: see text]-hued chromatic number, denoted by [Formula: see text], of sparse graphs. It is clear that any graph [Formula: see text] with maximum degree [Formula: see text] satisfies [Formula: see text]. Let [Formula: see text] be the maximum average degree of a graph [Formula: see text]. In this paper, we obtain the following results: (1) If [Formula: see text], then [Formula: see text] (2) If [Formula: see text], then [Formula: see text]. (3) If [Formula: see text], then [Formula: see text].


2019 ◽  
Vol 28 (5) ◽  
pp. 791-810 ◽  
Author(s):  
Kevin Hendrey ◽  
David R. Wood

AbstractAn (improper) graph colouring hasdefect dif each monochromatic subgraph has maximum degree at mostd, and hasclustering cif each monochromatic component has at mostcvertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than (2d+2)/(d+2)kisk-choosable with defectd. This improves upon a similar result by Havet and Sereni (J. Graph Theory, 2006). For clustered choosability of graphs with maximum average degreem, no (1-ɛ)mbound on the number of colours was previously known. The above result withd=1 solves this problem. It implies that every graph with maximum average degreemis$\lfloor{\frac{3}{4}m+1}\rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu (Discrete Math., 2017) to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degreemis$\lfloor{\frac{7}{10}m+1}\rfloor$-choosable with clustering 9, and is$\lfloor{\frac{2}{3}m+1}\rfloor$-choosable with clusteringO(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth–moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.


10.37236/5321 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Daniel J. Harvey ◽  
David R. Wood

Mader first proved that high average degree forces a given graph as a minor. Often motivated by Hadwiger's Conjecture, much research has focused on the average degree required to force a complete graph as a minor. Subsequently, various authors have considered the average degree required to force an arbitrary graph $H$ as a minor. Here, we strengthen (under certain conditions) a recent result by Reed and Wood, giving better bounds on the average degree required to force an $H$-minor when $H$ is a sparse graph with many high degree vertices. This solves an open problem of Reed and Wood, and also generalises (to within a constant factor) known results when $H$ is an unbalanced complete bipartite graph.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Alan Frieze ◽  
Juan Vera

International audience We consider the problem of generating a random q-colouring of a graph G=(V,E). We consider the simple Glauber Dynamics chain. We show that if for all v ∈ V the average degree of the subgraph H_v induced by the neighbours of v ∈ V is #x226a Δ where Δ is the maximum degree and Δ >c_1\ln n then for sufficiently large c_1, this chain mixes rapidly provided q/Δ >α , where α #x2248 1.763 is the root of α = e^\1/α \. For this class of graphs, which includes planar graphs, triangle free graphs and random graphs G_\n,p\ with p #x226a 1, this beats the 11Δ /6 bound of Vigoda for general graphs.


2017 ◽  
Vol 84 ◽  
pp. 219-242 ◽  
Author(s):  
Jakub Gajarský ◽  
Petr Hliněný ◽  
Jan Obdržálek ◽  
Sebastian Ordyniak ◽  
Felix Reidl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document