scholarly journals Rational Catalan Combinatorics: The Associahedron

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Drew Armstrong ◽  
Brendon Rhoades ◽  
Nathan Williams

International audience Each positive rational number $x>0$ can be written $\textbf{uniquely}$ as $x=a/(b-a)$ for coprime positive integers 0<$a$<$b$. We will identify $x$ with the pair $(a,b)$. In this extended abstract we use $\textit{rational Dyck paths}$ to define for each positive rational $x>0$ a simplicial complex $\mathsf{Ass} (x)=\mathsf{Ass} (a,b)$ called the $\textit{rational associahedron}$. It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the $\textit{rational Catalan number}$ $\mathsf{Cat} (x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)! }{ a! b!}.$ The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its Fuss-Catalan generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that $\mathsf{Ass} (a,b)$ is shellable and give nice product formulas for its $h$-vector (the $\textit{rational Narayana numbers}$) and $f$-vector (the $\textit{rational Kirkman numbers}$). We define $\mathsf{Ass} (a,b)$ .

10.37236/3432 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Drew Armstrong ◽  
Brendon Rhoades ◽  
Nathan Williams

Each positive rational number $x>0$ can be written uniquely as $x=a/(b-a)$ for coprime positive integers $0<a<b$. We will identify $x$ with the pair $(a,b)$. In this paper we define for each positive rational $x>0$ a simplicial complex $\mathsf{Ass}(x)=\mathsf{Ass}(a,b)$ called the rational associahedron.  It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the rational Catalan number $$\mathsf{Cat}(x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)!}{a!\,b!}.$$The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its "Fuss-Catalan" generalization studied by Athanasiadis-Tzanaki and Fomin-Reading.  We prove that $\mathsf{Ass}(a,b)$ is shellable and give nice product formulas for its $h$-vector (the rational Narayana numbers) and $f$-vector (the rational Kirkman numbers).  We define $\mathsf{Ass}(a,b)$ via rational Dyck paths: lattice paths from $(0,0)$ to $(b,a)$ staying above the line $y = \frac{a}{b}x$.  We also use rational Dyck paths to define a rational generalization of noncrossing perfect matchings of $[2n]$.  In the case $(a,b) = (n, mn+1)$, our construction produces the noncrossing partitions of $[(m+1)n]$ in which each block has size $m+1$.


Author(s):  
Hongjian Li ◽  
Pingzhi Yuan ◽  
Hairong Bai

Let (Equation) and (Equation) be positive integers with (Equation) . In this paper, we show that every positive rational number can be written as the form (Equation) , where m,n∈N if and only if (Equation) or (Equation) . Moreover, if (Equation) , then the proper representation of such representation is unique.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Luis Serrano ◽  
Christian Stump

International audience We exhibit a canonical connection between maximal $(0,1)$-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus a shellable sphere. In particular, this implies a positivity result for Schubert polynomials. For Ferrers shapes, we moreover construct a bijection to maximal fillings avoiding south-east chains of the same length which specializes to a bijection between $k$-triangulations of the $n$-gon and $k$-fans of Dyck paths. Using this, we translate a conjectured cyclic sieving phenomenon for $k$-triangulations with rotation to $k$-flagged tableaux with promotion. Nous décrivons un lien canonique entre les $(0,1)$-remplissages maximaux d'un polyomino-lune évitant les chaînes Nord-Est d'une longueur donnée, et les "pipe dreams'' réduits d'une certaine permutation. En suivant cette approche nous montrons que le complexe simplicial de tels remplissages maximaux est une sphère "vertex-decomposable'' et donc "shellable''. En particulier, cela entraîne un résultat de positivité sur les polynômes de Schubert. De plus, nous construisons, dans le cas des diagrammes de Ferrers, une bijection vers les remplissages maximaux évitant les chaînes Sud-Est de même longueur, qui se spécialise en une bijection entre les $k$-triangulations d'un $n$-gone et les $k$-faisceaux de chemins de Dyck. A l'aide de celle-ci, nous traduisons une instance conjecturale du phénomène de tamis cyclique pour les $k$-triangulations avec rotation dans le cadre des tableaux $k$-marqués avec promotion.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Myrto Kallipoliti ◽  
Henri Mühle

International audience In the first part of this article we present a realization of the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$ in terms of $m$-tuples of Dyck paths of height $n$, equipped with componentwise rotation order. For that, we define the $m$-cover poset $\mathcal{P}^{\langle m \rangle}$ of an arbitrary bounded poset $\mathcal{P}$, and show that the smallest lattice completion of the $m$-cover poset of the Tamari lattice $\mathcal{T}_n$ is isomorphic to the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$. A crucial tool for the proof of this isomorphism is a decomposition of $m$-Dyck paths into $m$-tuples of classical Dyck paths, which we call the strip-decomposition. Subsequently, we characterize the cases where the $m$-cover poset of an arbitrary poset is a lattice. Finally, we show that the $m$-cover poset of the Cambrian lattice of the dihedral group is a trim lattice with cardinality equal to the generalized Fuss-Catalan number of the dihedral group. Dans la première partie de cet article nous présentons une réalisation du treillis $m$ -Tamari $\mathcal{T}_n^{(m)}$ à l’aide de $m$-uplets de chemins de Dyck de hauteur $n$, équipés de l’ordre de rotation composante par composante. Pour cela, nous définissons le poset de $m$-couverture $\mathcal{P}^{\langle m \rangle}$ d’un poset borné quelconque $\mathcal{P}$, et montrons que la plus petite complétion en treillis du poset de $m$-couverture du treillis de Tamari $\mathcal{T}_n$ est isomorphe au treillis $m$-Tamari $\mathcal{T}_n^{(m)}$. Unoutil crucial pour la preuve de cet isomorphisme est une décomposition des chemins $m$-Dyck en $m$-uplets de chemins de Dyck usuels, que nous appelons la décomposition en bandes. Par la suite, nous caractérisons les cas où le poset de $m$-couverture d’un poset donné est un treillis. Enfin nous montrons que le poset de $m$-couverture du treillis Cambrien du groupe diédral est un treillis svelte de cardinalité le nombre généralisé de Fuss-Catalan du groupe diédral.


2021 ◽  
Vol 9 ◽  
Author(s):  
Colin Defant ◽  
Sam Hopkins

Abstract For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


Sign in / Sign up

Export Citation Format

Share Document