scholarly journals SB-Labelings, Distributivity, and Bruhat Order on Sortable Elements

10.37236/4942 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Henri Mühle

In this article, we investigate the set of $\gamma$-sortable elements, associated with a Coxeter group $W$ and a Coxeter element $\gamma\in W$, under Bruhat order, and we denote this poset by $\mathcal{B}_{\gamma}$. We show that this poset belongs to the class of SB-lattices recently introduced by Hersh and Mészáros, by proving a more general statement, namely that all join-distributive lattices are SB-lattices. The observation that $\mathcal{B}_{\gamma}$ is join-distributive is due to Armstrong. Subsequently, we investigate for which finite Coxeter groups $W$ and which Coxeter elements $\gamma\in W$ the lattice $\mathcal{B}_{\gamma}$ is in fact distributive. It turns out that this is the case for the "coincidental" Coxeter groups, namely the groups $A_{n},B_{n},H_{3}$ and $I_{2}(k)$. We conclude this article with a conjectural characteriziation of the Coxeter elements $\gamma$ of said groups for which $\mathcal{B}_{\gamma}$ is distributive in terms of forbidden orientations of the Coxeter diagram.

2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Barbara Baumeister ◽  
Thomas Gobet ◽  
Kieran Roberts ◽  
Patrick Wegener

AbstractWe provide a necessary and sufficient condition on an element of a finite Coxeter group to ensure the transitivity of the Hurwitz action on its set of reduced decompositions into products of reflections. We show that this action is transitive if and only if the element is a parabolic quasi-Coxeter element. We call an element of the Coxeter group parabolic quasi-Coxeter element if it has a factorization into a product of reflections that generate a parabolic subgroup. We give an unusual definition of a parabolic subgroup that we show to be equivalent to the classical one for finite Coxeter groups.


10.37236/70 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Henrik Eriksson ◽  
Kimmo Eriksson

For a Coxeter group $(W,S)$, a permutation of the set $S$ is called a Coxeter word and the group element represented by the product is called a Coxeter element. Moving the first letter to the end of the word is called a rotation and two Coxeter elements are rotation equivalent if their words can be transformed into each other through a sequence of rotations and legal commutations. We prove that Coxeter elements are conjugate if and only if they are rotation equivalent. This was known for some special cases but not for Coxeter groups in general.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience Let $(W,S)$ be an arbitrary Coxeter system. For each sequence $\omega =(\omega_1,\omega_2,\ldots) \in S^{\ast}$ in the generators we define a partial order― called the $\omega \mathsf{-sorting order}$ ―on the set of group elements $W_{\omega} \subseteq W$ that occur as finite subwords of $\omega$ . We show that the $\omega$-sorting order is a supersolvable join-distributive lattice and that it is strictly between the weak and strong Bruhat orders on the group. Moreover, the $\omega$-sorting order is a "maximal lattice'' in the sense that the addition of any collection of edges from the Bruhat order results in a nonlattice. Along the way we define a class of structures called $\mathsf{supersolvable}$ $\mathsf{antimatroids}$ and we show that these are equivalent to the class of supersolvable join-distributive lattices.


10.37236/362 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Nathan Reading ◽  
David E Speyer

Each Coxeter element $c$ of a Coxeter group $W$ defines a subset of $W$ called the $c$-sortable elements. The choice of a Coxeter element of $W$ is equivalent to the choice of an acyclic orientation of the Coxeter diagram of $W$. In this paper, we define a more general notion of $\Omega$-sortable elements, where $\Omega$ is an arbitrary orientation of the diagram, and show that the key properties of $c$-sortable elements carry over to the $\Omega$-sortable elements. The proofs of these properties rely on reduction to the acyclic case, but the reductions are nontrivial; in particular, the proofs rely on a subtle combinatorial property of the weak order, as it relates to orientations of the Coxeter diagram. The $c$-sortable elements are closely tied to the combinatorics of cluster algebras with an acyclic seed; the ultimate motivation behind this paper is to extend this connection beyond the acyclic case.


10.37236/1870 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Nathan Reading ◽  
Debra J. Waugh

We give a quadratic lower bound and a cubic upper bound on the order dimension of the Bruhat (or strong) ordering of the affine Coxeter group ${\tilde{A}}_n$. We also demonstrate that the order dimension of the Bruhat order is infinite for a large class of Coxeter groups.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter introduces the notion of a Tits index and the notion of the relative Coxeter diagram of a Tits index. It first defines a Tits index, which can be anisotropic or isotropic, quasi-split or split, before considering a number of propositions regarding compatible representations. It then gives a proof of the theorem that includes two assumptions about a Coxeter system, focusing on the absolute Coxeter system, the relative Coxeter system, and the relative Coxeter group of the Tits index, as well as the absolute Coxeter diagram (or absolute type), the relative Coxeter diagram (or relative type), and the absolute rank and the relative rank of the Tits index. The chapter concludes with some observations about the case that (W, S) is spherical, irreducible or affine.


2014 ◽  
Vol 66 (2) ◽  
pp. 354-372 ◽  
Author(s):  
Ruth Kellerhals ◽  
Alexander Kolpakov

AbstractDue to work of W. Parry it is known that the growth rate of a hyperbolic Coxeter group acting cocompactly on H3 is a Salem number. This being the arithmetic situation, we prove that the simplex group (3,5,3) has the smallest growth rate among all cocompact hyperbolic Coxeter groups, and that it is, as such, unique. Our approach provides a different proof for the analog situation in H2 where E. Hironaka identified Lehmer's number as the minimal growth rate among all cocompact planar hyperbolic Coxeter groups and showed that it is (uniquely) achieved by the Coxeter triangle group (3,7).


10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


Author(s):  
Mehmet Koca ◽  
Nazife Ozdes Koca ◽  
Muna Al-Shueili

There are two chiral Archimedean polyhedra, the snub cube and snub dodecahedron together with their dual Catalan solids, pentagonal icositetrahedron and pentagonal hexacontahedron. In this paper we construct the chiral polyhedra and their dual solids in a systematic way. We use the proper rotational subgroups of the Coxeter groups and to derive the orbits representing the solids of interest. They lead to the polyhedra tetrahedron, icosahedron, snub cube, and snub dodecahedron respectively. We prove that the tetrahedron and icosahedron can be transformed to their mirror images by the proper rotational octahedral group so they are not classified in the class of chiral polyhedra. It is noted that vertices of the snub cube and snub dodecahedron can be derived from the vectors, which are linear combinations of the simple roots, by the actions of the proper rotation groupsand  respectively. Their duals are constructed as the unions of three orbits of the groups of concern. We also construct the polyhedra, quasiregular in general, by combining chiral polyhedra with their mirror images. As a by-product we obtain the pyritohedral group as the subgroup the Coxeter group and discuss the constructions of pyritohedrons. We employ a method which describes the Coxeter groups and their orbits in terms of quaternions.  


2019 ◽  
Vol 22 (6) ◽  
pp. 1001-1013
Author(s):  
Rupert W. T. Yu

Abstract In this note, we determine the minimum number of involutions required to generate a finite irreducible Coxeter group, and also whenever such generation is possible, its alternating subgroup. Explicit generators are given.


Sign in / Sign up

Export Citation Format

Share Document