scholarly journals Generalised Polygons Admitting a Point-Primitive Almost Simple Group of Suzuki or Ree Type

10.37236/5510 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Luke Morgan ◽  
Tomasz Popiel

Let $G$ be a collineation group of a thick finite generalised hexagon or generalised octagon $\Gamma$. If $G$ acts primitively on the points of $\Gamma$, then a recent result of Bamberg et al. shows that $G$ must be an almost simple group of Lie type. We show that, furthermore, the minimal normal subgroup $S$ of $G$ cannot be a Suzuki group or a Ree group of type $^2\mathrm{G}_2$, and that if $S$ is a Ree group of type $^2\mathrm{F}_4$, then $\Gamma$ is (up to point-line duality) the classical Ree-Tits generalised octagon.


Author(s):  
Jicheng Ma

We study [Formula: see text]-arc-transitive cubic graph [Formula: see text], and give a characterization of minimal normal subgroups of the automorphism group. In particular, each [Formula: see text] with quasi-primitive automorphism group is characterized. An interesting consequence of this characterization states that a non-solvable minimal normal subgroup [Formula: see text] contains at most 2 copies of non-abelian simple group when it acts transitively on arcs, or contains at most 6 copies of non-abelian simple group when it acts regularly on vertices.



1985 ◽  
Vol 37 (4) ◽  
pp. 579-611 ◽  
Author(s):  
Chat Yin Ho

This paper studies how coding theory and group theory can be used to produce information about a finite projective plane π and a collineation group G of π.A new proof for Hering's bound on |G| is given in 2.5. Using the idea of coding theory developed in [9], a relation between two rows of the incidence matrix of π with respect to a tactical decomposition is obtained in 2.1. This result yields, among other things, some techniques in calculating |G|, and generalizes a result of Roth [16], [see 2.4 and 2.5].Hering [7] introduced the notion of strong irreducibility of G, that is, G does not leave invariant any point, line, triangle or proper subplane. He showed that if in addition G contains a non-trivial perspectivity, then there is a unique minimal normal subgroup of G. This subgroup is either non-abelian simple or isomorphic to the elementary abelian group Z3 × Z3 of order 9.



Author(s):  
Cheryl E. Praeger

AbstractLet Gbe a primitive permutation group on a finite set Ω. We investigate the subconstitutents of G, that is the permutation groups induced by a point stabilizer on its orbits in Ω, in the cases where Ghas a diagonal action or a product action on Ω. In particular we show in these cases that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple group or N acts regularly on Ω: we investigate further the case where N is regular on Ω.



2003 ◽  
Vol 45 (2) ◽  
pp. 281-291 ◽  
Author(s):  
FRANCESCA DALLA VOLTA ◽  
ANDREA LUCCHINI ◽  
FIORENZA MORINI


2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].





1972 ◽  
Vol s2-5 (2) ◽  
pp. 222-222
Author(s):  
Thomas J. Laffey


1969 ◽  
Vol 9 (1-2) ◽  
pp. 250-251 ◽  
Author(s):  
J. N. Ward

Let p be a class of finite soluble groups which is closed under epimorphic images and let g be a saturated formation. Then if G is a group of minimal order belonging to p but not to g, F(G), the Fitting subgroup of G, is the unique minimal normal subgroup of G. It is to groups with this property that the following proposition is applicable.



2008 ◽  
Vol 50 (1) ◽  
pp. 75-81 ◽  
Author(s):  
PAZ JIMÉNEZ–SERAL

AbstractWe relate the coefficients of the probabilistic zeta function of a finite monolithic group to those of an almost simple group.



Sign in / Sign up

Export Citation Format

Share Document