scholarly journals Modification of Griffiths' Result for Even Integers

10.37236/6285 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Eshita Mazumdar ◽  
Sneh Bala Sinha

For a finite abelian group $G$ with $\exp(G)=n$, the arithmetical invariant $\mathsf s_A(G)$ is defined to be the least integer $k$ such that any sequence $S$ with length $k$ of elements in $G$ has a $A$ weighted zero-sum subsequence of length $n$. When $A=\{1\}$, it is the Erdős-Ginzburg-Ziv constant and is denoted by $\mathsf s (G)$. For certain class of sets $A$, we already have some general bounds for these weighted constants corresponding to the cyclic group $\mathbb{Z}_n$, which was given by Griffiths. For odd integer $n$, Adhikari and Mazumdar generalized the above mentioned results in the sense that they hold for more sets $A$. In the present paper we modify Griffiths' method for even $n$ and obtain general bound for the weighted constants for certain class of weighted sets which include sets that were not covered by Griffiths for $n\equiv 0 \pmod{4}$.

10.37236/840 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Weidong Gao ◽  
Yuanlin Li ◽  
Jiangtao Peng ◽  
Fang Sun

Let $G$ be an additive finite abelian group and $S \subset G$ a subset. Let f$(S)$ denote the number of nonzero group elements which can be expressed as a sum of a nonempty subset of $S$. It is proved that if $|S|=6$ and there are no subsets of $S$ with sum zero, then f$(S)\geq 19$. Obviously, this lower bound is best possible, and thus this result gives a positive answer to an open problem proposed by R.B. Eggleton and P. Erdős in 1972. As a consequence, we prove that any zero-sum free sequence $S$ over a cyclic group $G$ of length $|S| \ge {6|G|+28\over19}$ contains some element with multiplicity at least ${6|S|-|G|+1\over17}$.


Author(s):  
Weidong Gao ◽  
Siao Hong ◽  
Wanzhen Hui ◽  
Xue Li ◽  
Qiuyu Yin ◽  
...  

10.37236/970 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Fang Sun

Let $G$ be a finite abelian group with exponent $m$, and let $S$ be a sequence of elements in $G$. Let $f(S)$ denote the number of elements in $G$ which can be expressed as the sum over a nonempty subsequence of $S$. In this paper, we show that, if $|S|=m$ and $S$ contains no nonempty subsequence with zero sum, then $f(S)\geq 2m-1$. This answers an open question formulated by Gao and Leader. They proved the same result with the restriction $(m,6)=1$.


Integers ◽  
2012 ◽  
Vol 12 (4) ◽  
Author(s):  
Weidong Gao ◽  
Linlin Wang

Abstract.Letdenote the cross number ofWe determine


2017 ◽  
Vol 14 (01) ◽  
pp. 167-191 ◽  
Author(s):  
Dongchun Han ◽  
Hanbin Zhang

Let [Formula: see text] be an additive finite abelian group with exponent [Formula: see text]. For any positive integer [Formula: see text], let [Formula: see text] be the smallest positive integer [Formula: see text] such that every sequence [Formula: see text] in [Formula: see text] of length at least [Formula: see text] has a zero-sum subsequence of length [Formula: see text]. Let [Formula: see text] be the Davenport constant of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite abelian [Formula: see text]-group with [Formula: see text] then [Formula: see text] for every [Formula: see text], which confirms a conjecture by Gao et al. recently, where [Formula: see text] is a prime.


2020 ◽  
Vol 30 (1) ◽  
pp. 15-25
Author(s):  
T. Banakh ◽  
◽  
A. Ravsky ◽  

A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.


2001 ◽  
Vol 63 (1) ◽  
pp. 115-121 ◽  
Author(s):  
T. Bier ◽  
A. Y. M. Chin

Let A be a finite Abelian group written additively. For two positive integers k, l with k ≠ l, we say that a subset S ⊂ A is of type (k, l) or is a (k, l) -set if the equation x1 + x2 + … + xk − xk+1−… − xk+1 = 0 has no solution in the set S. In this paper we determine the largest possible cardinality of a (k, l)-set of the cyclic group ℤP where p is an odd prime. We also determine the number of (k, l)-sets of ℤp which are in arithmetic progression and have maximum cardinality.


2013 ◽  
Vol 11 (9) ◽  
Author(s):  
Kálmán Cziszter ◽  
Mátyás Domokos

AbstractKnown results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.


2017 ◽  
Vol 13 (02) ◽  
pp. 301-308 ◽  
Author(s):  
Mohan N. Chintamani ◽  
Prabal Paul

Let [Formula: see text] be a finite abelian group with exponent exp[Formula: see text]. Let [Formula: see text]. The constant [Formula: see text] is defined as the least positive integer [Formula: see text] such that for any given sequence [Formula: see text] of elements of [Formula: see text] with length [Formula: see text] it has a [Formula: see text] length [Formula: see text]-weighted zero-sum subsequence. In this article, we obtain the exact value of [Formula: see text] for [Formula: see text] and an upper bound for the case [Formula: see text], where [Formula: see text] is an odd prime, [Formula: see text] is an odd integer and [Formula: see text]. We also obtain the structural information on the extremal zero-sum free sequences.


10.37236/841 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Weidong Gao ◽  
Yuanlin Li ◽  
Jiangtao Peng ◽  
Fang Sun

Let $G$ be an additive finite abelian group with exponent $\exp (G) = n$. For a sequence $S$ over $G$, let f$(S)$ denote the number of non-zero group elements which can be expressed as a sum of a nontrivial subsequence of $S$. We show that for every zero-sum free sequence $S$ over $G$ of length $|S| = n+1$ we have f$(S) \ge 3n-1$.


Sign in / Sign up

Export Citation Format

Share Document