scholarly journals Signed Cycle Double Covers

10.37236/6760 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Lingsheng Shi ◽  
Zhang Zhang

The cycle double cover conjecture states that every bridgeless graph has a collection of cycles which together cover every edge of the graph exactly twice. A signed graph is a graph with each edge assigned by a positive or a negative sign. In this article, we prove a weak version of this conjecture that is the existence of a signed cycle double cover for all bridgeless graphs. We also show the relationships of the signed cycle double cover and other famous conjectures such as the Tutte flow conjectures and the shortest cycle cover conjecture etc.

2021 ◽  
Vol 21 (2) ◽  
pp. 221-225
Author(s):  
Taro Hayashi

Abstract General K3 surfaces obtained as double covers of the n-th Hirzebruch surfaces with n = 0, 1, 4 are not double covers of other smooth surfaces. We give a criterion for such a K3 surface to be a double covering of another smooth rational surface based on the branch locus of double covers and fibre spaces of Hirzebruch surfaces.


10.37236/9284 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Anna Kompišová ◽  
Robert Lukot'ka

Let $G$ be a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two and let $cc(G)$ be the length of its shortest cycle cover. It is known that if $cc(G) < 1.4m$ in bridgeless graphs with $n_2 \le m/10$, then the Cycle Double Cover Conjecture holds. Fan (2017)  proved that if $n_2 = 0$, then $cc(G) < 1.6258m$ and $cc(G) < 1.6148m$ provided that $G$ is loopless; morever, if $n_2 \le m/30$, then $cc(G) < 1.6467m$. We show that for a bridgeless multigraph with $m$ edges and $n_2$ vertices of degree two, $cc(G) < 1.6148m + 0.0741n_2$. Therefore, if $n_2=0$, then $cc(G) < 1.6148m$ even if $G$ has loops; if $n_2 \le m/30$, then $cc(G) < 1.6173m$; and if $n_2 \le m/10$, then $cc(G) < 1.6223|E(G)|$. Our improvement is obtained by randomizing Fan's construction.


1974 ◽  
Vol 26 (1) ◽  
pp. 145-176 ◽  
Author(s):  
Robert Wells

The real line will be R, Euclidean n-space will be Rn, the unit ball in Rn will be En, the unit sphere in Rn+1 will be Sn, and real projective n-space will be Pn. The canonical line bundle associated with the double cover Sn → Pn will be ηn. If γ is a vector bundle, E(γ) will be its associated cell bundle, S(γ) its associated sphere bundle, P(γ) its associated projective space bundle (P(γ) = S(γ) / (-1)) and T(γ) = E(γ)/S(γ) its Thorn space.


Author(s):  
R. El Shanawany ◽  
M. Higazy ◽  
A. El Mesady

LetHbe a graph onnvertices and𝒢a collection ofnsubgraphs ofH, one for each vertex, where𝒢is an orthogonal double cover (ODC) ofHif every edge ofHoccurs in exactly two members of𝒢and any two members share an edge whenever the corresponding vertices are adjacent inHand share no edges whenever the corresponding vertices are nonadjacent inH. In this paper, we are concerned with the Cartesian product of symmetric starter vectors of orthogonal double covers of the complete bipartite graphs and using this method to construct ODCs by new disjoint unions of complete bipartite graphs.


1996 ◽  
Vol 39 (2) ◽  
pp. 285-289
Author(s):  
John Brinkman

Let G be a finite group and denote by µ(G) (see [2]) the least positive integer m such that G has a faithful permutation representation in the symmetric group of degree m. This note considers the value of µ(G) when G is a double cover of the symmetric group.


1978 ◽  
Vol 30 (6) ◽  
pp. 1319-1330 ◽  
Author(s):  
I. Hambleton ◽  
R. J. Milgram

Let π: X’ —” X be a double cover of 2n-dimensional Poincaré duality (PD) spaces. The double cover is a fibering so it is classified by a map f: X → RP1+1(l ≫ n). If the homotopy class of f contains a representative which is Poincaré transverse [5] to RPl ⊂ RPl+1, we say that w is Poincarésplit-table.


1995 ◽  
Vol 137 ◽  
pp. 1-32 ◽  
Author(s):  
Antonio Lanteri ◽  
Marino Palleschi ◽  
Andrew J. Sommese

The classical subject of surfaces containing a hyperelliptic curve (here a double cover of P1) among their hyperplane sections was settled some years ago by the third author and Van de Ven [SV] (see also [Se], [Io]). This paper is devoted to answering the following general question arising very naturally from that problem.


1976 ◽  
Vol 14 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Derek A. Waller

A projection morphism ρ: G1 → G2 of finite graphs maps the vertex-set of G1 onto the vertex-set of G2, and preserves adjacency. As an example, if each vertex v of the dodecahedron graph D is identified with its unique antipodal vertex v¯ (which has distance 5 from v) then this induces an identification of antipodal pairs of edges, and gives a (2:1)-projection p: D → P where P is the Petersen graph.In this paper a category-theoretical approach to graphs is used to define and study such double cover projections. An upper bound is found for the number of distinct double covers ρ: G1 → G2 for a given graph G2. A classification theorem for double cover projections is obtained, and it is shown that the n–dimensional octahedron graph K2,2,…,2 plays the role of universal object.


2015 ◽  
Vol 16 (3) ◽  
pp. 609-671 ◽  
Author(s):  
Eyal Kaplan

We construct local and global metaplectic double covers of odd general spin groups, using the cover of Matsumoto of spin groups. Following Kazhdan and Patterson, a local exceptional representation is the unique irreducible quotient of a principal series representation, induced from a certain exceptional character. The global exceptional representation is obtained as the multi-residue of an Eisenstein series: it is an automorphic representation, and it decomposes as the restricted tensor product of local exceptional representations. As in the case of the small representation of$\mathit{SO}_{2n+1}$of Bump, Friedberg, and Ginzburg, exceptional representations enjoy the vanishing of a large class of twisted Jacquet modules (locally), or Fourier coefficients (globally). Consequently they are useful in many settings, including lifting problems and Rankin–Selberg integrals. We describe one application, to a calculation of a co-period integral.


1984 ◽  
Vol 96 (2) ◽  
pp. 195-201 ◽  
Author(s):  
John F. Humphreys

Let G be a finite group, Sn be the symmetric group on n symbols and An be the corresponding alternating group. The conjugacy classes of the wreath product GSn (or monomial group as it is sometimes known) and the conjugacy classes of GAn have been described by Kerber (see [2] and [3]). The group Sn has a double cover n so that the faithful complex representations of this double cover may be regarded as protective representations of Sn. In Section 2, a particular double cover for GSn is constructed, the faithful complex representations of this group being the subject of a joint article with Peter Hoffman[1]. In the present paper, our task is to determine whether a conjugacy class of GSn corresponds to one or to two conjugacy classes in the double cover of GSn (and similarly for GAn). The main results, Theorems 1 and 2, are stated precisely in Section 2 and proved in Sections 3 and 4 respectively. The case when G = 1 provides classical results of Schur ([5], Satz IV). When G is a cyclic group, Read [4] has determined the conjugacy classes, not just for our particular double cover, but for all possible double covers of GSn.


Sign in / Sign up

Export Citation Format

Share Document