scholarly journals A Refined Count of Coxeter Element Reflection Factorizations

10.37236/7362 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Elise DelMas ◽  
Thomas Hameister ◽  
Victor Reiner

For well-generated complex reflection groups, Chapuy and Stump gave a simple product for a generating function counting reflection factorizations of a Coxeter element by their length. This is refined here to record the numberof reflections used from each orbit of hyperplanes. The proof is case-by-case via the classification of well-generated groups. It implies a new expression for the Coxeter number, expressed via data coming from a hyperplane orbit; a case-free proof of this due to J. Michel is included.




Author(s):  
Carlos E. Arreche ◽  
Nathan F. Williams

Abstract We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalised exponents. Our refinement gives a uniform proof and generalisation of a recent theorem of the second author.



2020 ◽  
pp. 1-48
Author(s):  
Joel Brewster Lewis ◽  
Alejandro H. Morales

Abstract We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.



2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.



1990 ◽  
Vol 18 (12) ◽  
pp. 3999-4029 ◽  
Author(s):  
M.C. Hughes


10.37236/232 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
D. Armstrong ◽  
C. Krattenthaler

The purpose of this paper is to complete the study, begun in the first author's PhD thesis, of the topology of the poset of generalized noncrossing partitions associated to real reflection groups. In particular, we calculate the Euler characteristic of this poset with the maximal and minimal elements deleted. As we show, the result on the Euler characteristic extends to generalized noncrossing partitions associated to well-generated complex reflection groups.





Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 438
Author(s):  
Jeong-Yup Lee ◽  
Dong-il Lee ◽  
SungSoon Kim

We construct a Gröbner-Shirshov basis of the Temperley-Lieb algebra T ( d , n ) of the complex reflection group G ( d , 1 , n ) , inducing the standard monomials expressed by the generators { E i } of T ( d , n ) . This result generalizes the one for the Coxeter group of type B n in the paper by Kim and Lee We also give a combinatorial interpretation of the standard monomials of T ( d , n ) , relating to the fully commutative elements of the complex reflection group G ( d , 1 , n ) . More generally, the Temperley-Lieb algebra T ( d , r , n ) of the complex reflection group G ( d , r , n ) is defined and its dimension is computed.







Sign in / Sign up

Export Citation Format

Share Document