coxeter number
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Diego Delmastro ◽  
Jaume Gomis

Abstract 4d$$ \mathcal{N} $$ N = 1 super Yang-Mills (SYM) with simply connected gauge group G has h gapped vacua arising from the spontaneously broken discrete R-symmetry, where h is the dual Coxeter number of G. Therefore, the theory admits stable domain walls interpolating between any two vacua, but it is a nonperturbative problem to determine the low energy theory on the domain wall. We put forward an explicit answer to this question for all the domain walls for G = SU(N), Sp(N), Spin(N) and G2, and for the minimal domain wall connecting neighboring vacua for arbitrary G. We propose that the domain wall theories support specific nontrivial topological quantum field theories (TQFTs), which include the Chern-Simons theory proposed long ago by Acharya-Vafa for SU(N). We provide nontrivial evidence for our proposals by exactly matching renormalization group invariant partition functions twisted by global symmetries of SYM computed in the ultraviolet with those computed in our proposed infrared TQFTs. A crucial element in this matching is constructing the Hilbert space of spin TQFTs, that is, theories that depend on the spin structure of spacetime and admit fermionic states — a subject we delve into in some detail.


10.37236/9557 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Soichi Okada

Birational rowmotion is a discrete dynamical system on the set of all positive real-valued functions on a finite poset, which is a birational lift of combinatorial rowmotion on order ideals. It is known that combinatorial rowmotion for a minuscule poset has order equal to the Coxeter number, and exhibits the file homomesy phenomenon for refined order ideal cardinality statistics. In this paper we generalize these results to the birational setting. Moreover, as a generalization of birational promotion on a product of two chains, we introduce birational Coxeter-motion on minuscule posets, and prove that it enjoys periodicity and file homomesy.


2018 ◽  
Vol Volume 2 ◽  
Author(s):  
Pramod Achar ◽  
Nicholas Cooney ◽  
Simon Riche

International audience Let G be a connected reductive algebraic group over an algebraically closed field k, with simply connected derived subgroup. The exotic t-structure on the cotangent bundle of its flag variety T^*(G/B), originally introduced by Bezrukavnikov, has been a key tool for a number of major results in geometric representation theory, including the proof of the graded Finkelberg-Mirkovic conjecture. In this paper, we study (under mild technical assumptions) an analogous t-structure on the cotangent bundle of a partial flag variety T^*(G/P). As an application, we prove a parabolic analogue of the Arkhipov-Bezrukavnikov-Ginzburg equivalence. When the characteristic of k is larger than the Coxeter number, we deduce an analogue of the graded Finkelberg-Mirkovic conjecture for some singular blocks. Soit G un groupe algébrique réductif connexe sur un corps k algébriquement clos. La t-structure exotique sur le fibré cotangent de sa variété de drapeaux T^*(G/B), introduite à l'origine par Bezrukavnikov, a été un outil clé pour de nombreux résultats majeurs en théorie géométrique des représentations, en particulier la démonstration de la conjecture de Finkelberg-Mirkovic graduée. Dans cet article, nous étudions (sous de légères hypothèses techniques) une t-structure analogue sur le fibré cotangent de la variété de drapeaux partiels T^*(G/P). Comme application, nous prouvons un analogue parabolique de l'équivalence de Arkhipov-Bezrukavnikov-Ginzburg. Lorsque la caractéristique de k est supérieure au nombre de Coxeter, nous déduisons un analogue de la conjecture de Finkelberg-Mirkovic graduée pour certains blocs singuliers.


2018 ◽  
Vol 17 (11) ◽  
pp. 1850211
Author(s):  
Yiyang Li ◽  
Bin Shu ◽  
Yufeng Yao

Let [Formula: see text] be a connected reductive algebraic group over an algebraically closed field [Formula: see text] of prime characteristic [Formula: see text] and [Formula: see text]. For a given nilpotent [Formula: see text]-character [Formula: see text], let [Formula: see text] be a baby Verma module associated with a restricted weight [Formula: see text]. A conjecture describing the support variety of [Formula: see text] via that of its restricted counterpart is given: [Formula: see text]. Under the assumption of [Formula: see text](the Coxeter number) and [Formula: see text] [Formula: see text]-regular, this conjecture is proved when [Formula: see text] falls in the regular nilpotent orbit for any [Formula: see text] and the subregular nilpotent orbit for [Formula: see text] being of type [Formula: see text]. We also verify this conjecture whenever [Formula: see text] is of type [Formula: see text] and [Formula: see text] falls in the minimal nilpotent orbit.


2018 ◽  
Vol 74 (5) ◽  
pp. 499-511 ◽  
Author(s):  
Mehmet Koca ◽  
Nazife Ozdes Koca ◽  
Abeer Al-Siyabi ◽  
Ramazan Koc

Voronoi and Delaunay (Delone) cells of the root and weight lattices of the Coxeter–Weyl groupsW(An) andW(Dn) are constructed. The face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) lattices are obtained in this context. Basic definitions are introduced such as parallelotope, fundamental simplex, contact polytope, root polytope, Voronoi cell, Delone cell,n-simplex,n-octahedron (cross polytope),n-cube andn-hemicube and their volumes are calculated. The Voronoi cell of the root lattice is constructed as the dual of the root polytope which turns out to be the union of Delone cells. It is shown that the Delone cells centred at the origin of the root latticeAnare the polytopes of the fundamental weights ω1, ω2,…, ωnand the Delone cells of the root latticeDnare the polytopes obtained from the weights ω1, ωn−1and ωn. A simple mechanism explains the tessellation of the root lattice by Delone cells. It is proved that the (n−1)-facet of the Voronoi cell of the root latticeAnis an (n−1)-dimensional rhombohedron and similarly the (n−1)-facet of the Voronoi cell of the root latticeDnis a dipyramid with a base of an (n−2)-cube. The volume of the Voronoi cell is calculatedviaits (n−1)-facet which in turn can be obtained from the fundamental simplex. Tessellations of the root lattice with the Voronoi and Delone cells are explained by giving examples from lower dimensions. Similar considerations are also worked out for the weight latticesAn* andDn*. It is pointed out that the projection of the higher-dimensional root and weight lattices on the Coxeter plane leads to theh-fold aperiodic tiling, wherehis the Coxeter number of the Coxeter–Weyl group. Tiles of the Coxeter plane can be obtained by projection of the two-dimensional faces of the Voronoi or Delone cells. Examples are given such as the Penrose-like fivefold symmetric tessellation by theA4root lattice and the eightfold symmetric tessellation by theD5root lattice.


Author(s):  
Peter Orlik ◽  
Louis Solomon ◽  
Hiroaki Terao
Keyword(s):  

10.37236/7362 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Elise DelMas ◽  
Thomas Hameister ◽  
Victor Reiner

For well-generated complex reflection groups, Chapuy and Stump gave a simple product for a generating function counting reflection factorizations of a Coxeter element by their length. This is refined here to record the numberof reflections used from each orbit of hyperplanes. The proof is case-by-case via the classification of well-generated groups. It implies a new expression for the Coxeter number, expressed via data coming from a hyperplane orbit; a case-free proof of this due to J. Michel is included.


10.37236/6714 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

Let $\Phi$ be an irreducible crystallographic root system with Weyl group $W$, coroot lattice $\check{Q}$ and Coxeter number $h$. Recently the second named author defined a uniform $W$-isomorphism $\zeta$ between the finite torus $\check{Q}/(mh+1)\check{Q}$ and the set of non-nesting parking functions $\operatorname{Park}^{(m)}(\Phi)$. If $\Phi$ is of type $A_{n-1}$ and $m=1$ this map is equivalent to a map defined on labelled Dyck paths that arises in the study of the Hilbert series of the space of diagonal harmonics. In this paper we investigate the case $m=1$ for the other infinite families of root systems ($B_n$, $C_n$ and $D_n$). In each type we define models for the finite torus and for the set of non-nesting parking functions in terms of labelled lattice paths. The map $\zeta$ can then be viewed as a map between these combinatorial objects. Our work entails new bijections between (square) lattice paths and ballot paths.


2017 ◽  
Vol Volume 1 ◽  
Author(s):  
V. Balaji ◽  
P. Deligne ◽  
A. J. Parameswaran

Let $G$ be a reductive group over a field $k$ which is algebraically closed of characteristic $p \neq 0$. We prove a structure theorem for a class of subgroup schemes of $G$, for $p$ bounded below by the Coxeter number of $G$. As applications, we derive semi-simplicity results, generalizing earlier results of Serre proven in 1998, and also obtain an analogue of Luna's \'etale slice theorem for suitable bounds on $p$. Comment: Appendix is by Zhiwei Yun


Sign in / Sign up

Export Citation Format

Share Document