scholarly journals A Refinement of the Formula for $k$-ary Trees and the Gould-Vandermonde's Convolution

10.37236/776 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Ricky X. F. Chen

In this paper, we present an involution on some kind of colored $k$-ary trees which provides a combinatorial proof of a combinatorial sum involving the generalized Catalan numbers $C_{k,\gamma}(n)={\gamma\over k n+\gamma}{k n+\gamma\choose n}$. From the combinatorial sum, we refine the formula for $k$-ary trees and obtain an implicit formula for the generating function of the generalized Catalan numbers which obviously implies a Vandermonde type convolution generalized by Gould. Furthermore, we also obtain a combinatorial sum involving a vector generalization of the Catalan numbers by an extension of our involution.




Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 575-587 ◽  
Author(s):  
Feng Qi ◽  
Xiao-Ting Shi ◽  
Fang-Fang Liu

In the paper, by virtue of the Cauchy integral formula in the theory of complex functions, the authors establish an integral representation for the generating function of the Catalan numbers in combinatorics. From this, the authors derive an alternative integral representation, complete monotonicity, determinantal and product inequalities for the Catalan numbers.



10.37236/2153 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Masanori Ando

In this paper, we give combinatorial proofs and new generalizations of $q$-series identities of Dilcher and Uchimura related to divisor function. Some interesting combinatorial results related to partition and arm-length are also presented.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.





2011 ◽  
Vol 47 (6) ◽  
pp. 533-536
Author(s):  
A. L. Reznik ◽  
V. M. Efimov ◽  
A. A. Solov’ev ◽  
A. V. Torgov




2007 ◽  
Vol 114 (6) ◽  
pp. 1089-1100 ◽  
Author(s):  
Matjaž Konvalinka


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Alex Fink ◽  
Benjamin Iriarte Giraldo

International audience We present $\textit{type preserving}$ bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types $B$, $C$ and $D$ are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with noncrossing and nonnesting partitions, and this correspondence is established by means of elementary methods in all cases. The statistics can be then seen to be counted by the generalized Catalan numbers Cat$(W)$ when $W$ is a classical reflection group. In particular, the statistics of type $A$ appear as a new explicit example of objects that are counted by the classical Catalan numbers.



2018 ◽  
Vol 11 (1) ◽  
pp. 25-40
Author(s):  
Francisco Regis Vieira Alves ◽  


Sign in / Sign up

Export Citation Format

Share Document