scholarly journals Bijections between noncrossing and nonnesting partitions for classical reflection groups

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Alex Fink ◽  
Benjamin Iriarte Giraldo

International audience We present $\textit{type preserving}$ bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types $B$, $C$ and $D$ are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with noncrossing and nonnesting partitions, and this correspondence is established by means of elementary methods in all cases. The statistics can be then seen to be counted by the generalized Catalan numbers Cat$(W)$ when $W$ is a classical reflection group. In particular, the statistics of type $A$ appear as a new explicit example of objects that are counted by the classical Catalan numbers.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Christian Stump

International audience In type $A$, the $q,t$-Fuß-Catalan numbers $\mathrm{Cat}_n^{(m)}(q,t)$ can be defined as a bigraded Hilbert series of a module associated to the symmetric group $\mathcal{S}_n$. We generalize this construction to (finite) complex reflection groups and exhibit some nice conjectured algebraic and combinatorial properties of these polynomials in $q$ and $t$. Finally, we present an idea how these polynomials could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras. This is work in progress. Dans le cas du type $A$, les $q,t$-nombres de Fuß-Catalan $\mathrm{Cat}_n^{(m)}(q,t)$ peuvent être définis comme la série de Hilbert bigraduée d'un certain module associé au groupe symétrique $\mathcal{S}_n$. Nous généralisons cette construction aux groupes de réflexion complexes (finis) et nous formulons de jolies propriétés (conjecturales) algébriques et combinatoires de ces polynômes en $q$ et $t$. Enfin, nous décrivons une idée sur la manière dont ces polynômes pourraient être liés à certaines séries de Hilbert de modules apparaissant dans le contexte des algèbres de Cherednik rationnelles. Ceci est un travail en cours.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Susanna Fishel ◽  
Monica Vazirani

International audience It is well-known that Catalan numbers $C_n = \frac{1}{ n+1} \binom{2n}{n}$ count the number of dominant regions in the Shi arrangement of type $A$, and that they also count partitions which are both n-cores as well as $(n+1)$-cores. These concepts have natural extensions, which we call here the $m$-Catalan numbers and $m$-Shi arrangement. In this paper, we construct a bijection between dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn+1)$-cores. We also modify our construction to produce a bijection between bounded dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn-1)$-cores. The bijections are natural in the sense that they commute with the action of the affine symmetric group. Il est bien connu que les nombres de Catalan $C_n = \frac{1}{ n+1} \binom{2n}{n}$ comptent non seulement le nombre de régions dominantes dans le Shi arrangement de type $A$ mais aussi les partitions qui sont à la fois $n$-cœur et $(n+1)$-cœur. Ces concepts ont des extensions naturelles, que nous appelons ici les nombres $m$-Catalan et le $m$-Shi arrangement. Dans cet article, nous construisons une bijection entre régions dominantes du $m$-Shi arrangement et les partitions qui sont à la fois $n$-cœur et $(nm+1)$-coeur. Nous modifions également notre construction pour produire une bijection entre régions dominantes bornées du $m$-Shi arrangement et les partitions qui sont à la fois $n$-coeur et $(mn-1)$-cœur. Ces bijections sont naturelles dans le sens où elles commutent avec l'action du groupe affine symétrique.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
J. Irving ◽  
A. Rattan

International audience We give a compact expression for the number of factorizations of any permutation into a minimal number of transpositions of the form $(1 i)$. Our result generalizes earlier work of Pak ($\textit{Reduced decompositions of permutations in terms of star transpositions, generalized catalan numbers and k-ary trees}$, Discrete Math. $\textbf{204}$:329―335, 1999) in which substantial restrictions were placed on the permutation being factored. Nous présentons une expression compacte pour le nombre de factorisations minimales d'une permutation arbitraire de transposition de la forme $(1 i)$. Ce résultat généralise le travail passé de Pak ($\textit{Reduced decompositions of permutations in terms of star transpositions, generalized catalan numbers and k-ary trees}$, Discrete Math. $\textbf{204}$:329―335, 1999) dans lequel des restrictions substantielles sont imposées sur la permutation étant factorisée.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Nicolas Borie ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.





2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Jean-Philippe Labbé ◽  
Christian Stump

International audience We present a family of simplicial complexes called \emphmulti-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types ${A}$ and ${B}$ to general finite Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple combinatorial description of the compatibility relation among the set of almost positive roots in the cluster complex. Nous présentons une famille de complexes simpliciaux appelés \emphcomplexes des multi-amas. Ces complexes généralisent le concept de complexes des amas et étendent la notion de multi-associaèdre de type ${A}$ et ${B}$ aux groupes de Coxeter finis. Nous étudions des propriétés combinatoires et géométriques de ces objets et, en particulier nous fournissons une description combinatoire simple de la relation de compatibilité sur l'ensemble des racines presque positives du complexe des amas.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.



1980 ◽  
Vol 32 (2) ◽  
pp. 294-309
Author(s):  
Dragomir Ž. Djoković

Let G be a closed subgroup of one of the classical compact groups 0(n), U(n), Sp(n). By a reflection we mean a matrix in one of these groups which is conjugate to the diagonal matrix diag (–1, 1, …, 1). We say that G is a topological reflection group (t.r.g.) if the subgroup of G generated by all reflections in G is dense in G.It was shown recently by Eaton and Perlman [5] that, in case of 0(n), the whole group 0(n) is the unique infinite irreducible t.r.g. In this paper we solve the analogous problem for U(n) and Spin). Our method of proof is quite different from the one used in [5]. We treat simultaneously all the three cases.



2006 ◽  
Vol 182 ◽  
pp. 135-170 ◽  
Author(s):  
C. Bonnafé ◽  
G. I. Lehrer ◽  
J. Michel

AbstractLet G be a finite reflection group acting in a complex vector space V = ℂr, whose coordinate ring will be denoted by S. Any element γ ∈ GL(V) which normalises G acts on the ring SG of G-invariants. We attach invariants of the coset Gγ to this action, and show that if G′ is a parabolic subgroup of G, also normalised by γ, the invariants attaching to G′γ are essentially the same as those of Gγ. Four applications are given. First, we give a generalisation of a result of Springer-Stembridge which relates the module structures of the coinvariant algebras of G and G′ and secondly, we give a general criterion for an element of Gγ to be regular (in Springer’s sense) in invariant-theoretic terms, and use it to prove that up to a central element, all reflection cosets contain a regular element. Third, we prove the existence in any well-generated group, of analogues of Coxeter elements of the real reflection groups. Finally, we apply the analysis to quotients of G which are themselves reflection groups.



Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 438
Author(s):  
Jeong-Yup Lee ◽  
Dong-il Lee ◽  
SungSoon Kim

We construct a Gröbner-Shirshov basis of the Temperley-Lieb algebra T ( d , n ) of the complex reflection group G ( d , 1 , n ) , inducing the standard monomials expressed by the generators { E i } of T ( d , n ) . This result generalizes the one for the Coxeter group of type B n in the paper by Kim and Lee We also give a combinatorial interpretation of the standard monomials of T ( d , n ) , relating to the fully commutative elements of the complex reflection group G ( d , 1 , n ) . More generally, the Temperley-Lieb algebra T ( d , r , n ) of the complex reflection group G ( d , r , n ) is defined and its dimension is computed.



Sign in / Sign up

Export Citation Format

Share Document