scholarly journals Local Dimension is Unbounded for Planar Posets

10.37236/9258 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Bartłomiej Bosek ◽  
Jarosław Grytczuk ◽  
William T. Trotter

In 1981, Kelly showed that planar posets can have arbitrarily large dimension. However, the posets in Kelly's example have bounded Boolean dimension and bounded local dimension, leading naturally to the questions as to whether either Boolean dimension or local dimension is bounded for the class of planar posets. The question for Boolean dimension was first posed by Nešetřil and Pudlák in 1989 and remains unanswered today. The concept of local dimension is quite new, introduced in 2016 by Ueckerdt. Since that time, researchers have obtained many interesting results concerning Boolean dimension and local dimension, contrasting these parameters with the classic Dushnik-Miller concept of dimension, and establishing links between both parameters and structural graph theory, path-width and tree-width in particular. Here we show that local dimension is not bounded on the class of planar posets. Our proof also shows that the local dimension of a poset is not bounded in terms of the maximum local dimension of its blocks, and it provides an alternative proof of the fact that the local dimension of a poset cannot be bounded in terms of the tree-width of its cover graph, independent of its height.

2020 ◽  
Vol 39 (5) ◽  
pp. 6033-6046
Author(s):  
Shriram Kalathian ◽  
Sujatha Ramalingam ◽  
Sundareswaran Raman ◽  
Narasimman Srinivasan

A fuzzy graph is one of the versatile application tools in the field of mathematics, which allows the user to easily describe the fuzzy relation between any objects. The nature of fuzziness is favorable for any environment, which supports to predict the problem and solving it. Fuzzy graphs are beneficial to give more precision and flexibility to the system as compared to the classical model (i.e.,) crisp theory. A topological index is a numerical quantity for the structural graph of the molecule and it can be represented through Graph theory. Moreover, its application not only in the field of chemistry can also be applied in areas including computer science, networking, etc. A lot of topological indices are available in chemical-graph theory and H. Wiener proposed the first index to estimate the boiling point of alkanes called ‘Wiener index’. Many topological indices exist only in the crisp but it’s new to the fuzzy graph environment. The main aim of this paper is to define the topological indices in fuzzy graphs. Here, indices defined in fuzzy graphs are Modified Wiener index, Hyper Wiener index, Schultz index, Gutman index, Zagreb indices, Harmonic index, and Randić index with illustrations. Bounds for some of the indices are proved. The algorithms for distance matrix and MWI are shown. Finally, the application of these indices is discussed.


Sign in / Sign up

Export Citation Format

Share Document