scholarly journals Spectral Lower Bounds for the Quantum Chromatic Number of a Graph – Part II

10.37236/9295 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Pawel Wocjan ◽  
Clive Elphick ◽  
Parisa Darbari

Hoffman proved that a graph $G$ with eigenvalues $\mu_1 \geqslant \cdots \geqslant \mu_n$ and chromatic number $\chi(G)$ satisfies: \[\chi \geqslant 1 + \kappa\] where $\kappa$ is the smallest integer such that \[\mu_1 + \sum_{i=1}^{\kappa} \mu_{n+1-i} \leqslant 0.\] We strengthen this well known result by proving that $\chi(G)$ can be replaced by the quantum chromatic number, $\chi_q(G)$, where for all graphs $\chi_q(G) \leqslant \chi(G)$ and for some graphs $\chi_q(G)$ is significantly smaller than $\chi(G)$. We also prove a similar result, and investigate implications of these inequalities for the quantum chromatic number of various classes of graphs, which improves many known results. For example, we demonstrate that the Kneser graph $KG_{p,2}$ has $\chi_q = \chi = p - 2$.

2018 ◽  
Vol 68 ◽  
pp. 227-232 ◽  
Author(s):  
Bart Litjens ◽  
Sven Polak ◽  
Bart Sevenster ◽  
Lluís Vena

2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


10.37236/3573 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Frédéric Meunier

Using a $\mathbb{Z}_q$-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).


2004 ◽  
Vol 24 (2) ◽  
pp. 183
Author(s):  
Massimiliano Caramia ◽  
Jirí Fiala

2020 ◽  
Vol 343 (1) ◽  
pp. 111630
Author(s):  
Jeong-Hyun Kang ◽  
Hemanshu Kaul

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 389
Author(s):  
Manal Ghanem ◽  
Hasan Al-Ezeh ◽  
Ala’a Dabbour

Let c be a proper k-coloring of a graph G. Let π = { R 1 , R 2 , … , R k } be the partition of V ( G ) induced by c, where R i is the partition class receiving color i. The color code c π ( v ) of a vertex v of G is the ordered k-tuple ( d ( v , R 1 ) , d ( v , R 2 ) , … , d ( v , R k ) ) , where d ( v , R i ) is the minimum distance from v to each other vertex u ∈ R i for 1 ≤ i ≤ k . If all vertices of G have distinct color codes, then c is called a locating k-coloring of G. The locating-chromatic number of G, denoted by χ L ( G ) , is the smallest k such that G admits a locating coloring with k colors. In this paper, we give a characterization of the locating chromatic number of powers of paths. In addition, we find sharp upper and lower bounds for the locating chromatic number of powers of cycles.


Sign in / Sign up

Export Citation Format

Share Document