A note on the chromatic number of the square of Kneser graph K(2k+1,k)

2020 ◽  
Vol 343 (1) ◽  
pp. 111630
Author(s):  
Jeong-Hyun Kang ◽  
Hemanshu Kaul
2018 ◽  
Vol 68 ◽  
pp. 227-232 ◽  
Author(s):  
Bart Litjens ◽  
Sven Polak ◽  
Bart Sevenster ◽  
Lluís Vena

10.37236/9295 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Pawel Wocjan ◽  
Clive Elphick ◽  
Parisa Darbari

Hoffman proved that a graph $G$ with eigenvalues $\mu_1 \geqslant \cdots \geqslant \mu_n$ and chromatic number $\chi(G)$ satisfies: \[\chi \geqslant 1 + \kappa\] where $\kappa$ is the smallest integer such that \[\mu_1 + \sum_{i=1}^{\kappa} \mu_{n+1-i} \leqslant 0.\] We strengthen this well known result by proving that $\chi(G)$ can be replaced by the quantum chromatic number, $\chi_q(G)$, where for all graphs $\chi_q(G) \leqslant \chi(G)$ and for some graphs $\chi_q(G)$ is significantly smaller than $\chi(G)$. We also prove a similar result, and investigate implications of these inequalities for the quantum chromatic number of various classes of graphs, which improves many known results. For example, we demonstrate that the Kneser graph $KG_{p,2}$ has $\chi_q = \chi = p - 2$.


10.37236/3573 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Frédéric Meunier

Using a $\mathbb{Z}_q$-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).


10.37236/7907 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ferdinand Ihringer

We obtain a new weak Hilton-Milner type result for intersecting families of $k$-spaces in $\mathbb{F}_q^{2k}$, which improves several known results. In particular the chromatic number of the $q$-Kneser graph $qK_{n:k}$ was previously known for $n > 2k$ (except for $n=2k+1$ and $q=2$) or $k < q \log q - q$. Our result determines the chromatic number of $qK_{2k:k}$ for $q \geqslant 5$, so that the only remaining open cases are $(n, k) = (2k, k)$ with $q \in \{ 2, 3, 4 \}$ and $(n, k) = (2k+1, k)$ with $q = 2$.


10.37236/7469 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Marlo Eugster ◽  
Frank Mousset

In 1995, Erdös and Gyárfás proved that in every $2$-colouring of the edges of $K_n$, there is a vertex cover by $2\sqrt{n}$ monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers $r,s$, what is the smallest number $pc_{r,s}(K_n)$ such that in every colouring of the edges of $K_n$ with $r$ colours, there exists a vertex cover of $K_n$ by $pc_{r,s}(K_n)$ monochromatic paths using altogether at most $s$ different colours?For fixed integers $r>s$ and as $n\to\infty$, we prove that $pc_{r,s}(K_n) = \Theta(n^{1/\chi})$, where $\chi=\max{\{1,2+2s-r\}}$ is the chromatic number of the Kneser graph $KG(r,r-s)$. More generally, if one replaces $K_n$ by an arbitrary $n$-vertex graph with fixed independence number $\alpha$, then we have $pc_{r,s}(G) = O(n^{1/\chi})$, where this time around $\chi$ is the chromatic number of the Kneser hypergraph $KG^{(\alpha+1)}(r,r-s)$. This result is tight in the sense that there exist graphs with independence number $\alpha$ for which $pc_{r,s}(G) = \Omega(n^{1/\chi})$. This is in sharp contrast to the case $r=s$, where it follows from a result of Sárközy (2012) that $pc_{r,r}(G)$ depends only on $r$ and $\alpha$, but not on the number of vertices.We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic $d$-regular graphs.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Carsten Schultz

International audience Schrijver introduced the stable Kneser graph $SG_{n,k}, n \geq 1, k \geq 0$. This graph is a vertex critical graph with chromatic number $k+2$, its vertices are certain subsets of a set of cardinality $m=2n+k$. Björner and de Longueville have shown that its box complex is homotopy equivalent to a sphere, $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. The dihedral group $D_{2m}$ acts canonically on $SG_{n,k}$. We study the $D_{2m}$ action on $\mathrm{Hom}(K_2,SG_{n,k})$ and define a corresponding orthogonal action on $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. We establish a close equivariant relationship between the graphs $SG_{n,k}$ and Borsuk graphs of the $k$-sphere and use this together with calculations in the $\mathbb{Z}_2$-cohomology ring of $D_{2m}$ to tell which stable Kneser graphs are test graphs in the sense of Babson and Kozlov. The graphs $SG_{2s,4}$ are test graphs, i.e. for every graph $H$ and $r \geq 0$ such that $\mathrm{Hom}(SG_{2s,4},H)$ is $(r-1)$-connected, the chromatic number $\chi (H)$ is at least $r+6$. On the other hand, if $k \notin \{0,1,2,4,8\}$ and $n \geq N(k)$ then $SG_{n,k}$ is not a homotopy test graph, i.e. there are a graph $G$ and an $r \geq 1$ such that $\mathrm{Hom}(SG_{n,k}, G)$ is $(r-1)$-connected and $\chi (G) < r+k+2$. The latter result also depends on a new necessary criterion for being a test graph, which involves the automorphism group of the graph. Schrijver a défini le graphe de Kneser stable $SG_{n,k}$, avec $n \geq 1$ et $k \geq 0$. Le graphe $SG_{n,k}$ est un graphe critique (par rapport aux sommets) de nombre chromatique $k+2$, dont les sommets correspondent à certains sous-ensembles d'un ensemble de cardinalité $m=2n+k$. Björner et de Longueville ont démontré que son complexe de boîtes et la sphère sont homotopiquement équivalents, c'est-à-dire $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. Le groupe diédral $D_{2m}$ agit sur $SG_{n,k}$ canoniquement. Nous étudions l'action de $D_{2m}$ sur $\mathrm{Hom}(K_2,SG_{n,k})$ et nous définissons une action orthogonale correspondante sur $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. Par ailleurs, nous fournissons une relation équivariante étroite entre les graphes $SG_{n,k}$ et les graphes de Borsuk de la sphère de dimension $k$. Utilisant cette relation et certains calculs dans l'anneau de cohomologie de $D_{2m}$ sur $\mathbb{Z}_2$, nous décrivons quels graphes de Kneser stables sont des graphes de tests selon la notion de Babson et Kozlov. Les graphes $SG_{2s,4}$ sont des graphes de tests, c'est-à-dire que pour tout $H$ et $r \geq 0$ tels que $\mathrm{Hom}(SG_{2s,4},H)$ est $(r-1)$-connexe, le nombre chromatique $\chi (H)$ est au moins $r+6$. D'autre part, si $k \notin \{0,1,2,4,8\}$ et $n \geq N(k)$, alors $SG_{n,k}$ n'est pas un graphe de tests d'homologie: il existe un graphe $G$ et un entier $r \geq 1$ tels que $\mathrm{Hom}(SG_{n,k}, G)$ est $(r-1)$-connexe et $\chi (G) < r+k+2$. Ce dernier résultat dépend d'un nouveau critère nécessaire pour être un graphe de tests, qui implique le groupe d'automorphismes du graphe.


10.37236/3066 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Che ◽  
Karen L. Collins

A labeling $f: V(G) \rightarrow \{1, 2, \ldots, d\}$ of the vertex set of a graph $G$ is said to be proper $d$-distinguishing if it is a proper coloring of $G$ and any nontrivial automorphism of $G$ maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of $G$, denoted by $\chi_D(G)$, is the minimum $d$ such that $G$ has a proper $d$-distinguishing labeling. Let $\chi(G)$ be the chromatic number of $G$ and $D(G)$ be the distinguishing number of $G$. Clearly, $\chi_D(G) \ge \chi(G)$ and $\chi_D(G) \ge D(G)$. Collins, Hovey and Trenk have given a tight upper bound on $\chi_D(G)-\chi(G)$ in terms of the order of the automorphism group of $G$, improved when the automorphism group of $G$ is a finite abelian group. The Kneser graph $K(n,r)$ is a graph whose vertices are the $r$-subsets of an $n$ element set, and two vertices of $K(n,r)$ are adjacent if their corresponding two $r$-subsets are disjoint. In this paper, we provide a class of graphs $G$, namely Kneser graphs $K(n,r)$, whose automorphism group is the symmetric group, $S_n$, such that $\chi_D(G) - \chi(G) \le 1$. In particular, we prove that $\chi_D(K(n,2))=\chi(K(n,2))+1$ for $n\ge 5$. In addition, we show that $\chi_D(K(n,r))=\chi(K(n,r))$ for $n \ge 2r+1$ and $r\ge 3$.


2019 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
Meysam Alishahi ◽  
Hajiabolhassan Hossein

AbstractIn an earlier paper, the present authors (2015) introduced the altermatic number of graphs and used Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine the chromatic number of a large family of matching Kneser graphs by specifying their altermatic number. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the generalized Turán number of matchings.


10.37236/605 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Benjamin Braun

For integers $n\geq 1$, $k\geq 0$, the stable Kneser graph $SG_{n,k}$ (also called the Schrijver graph) has as vertex set the stable $n$-subsets of $[2n+k]$ and as edges disjoint pairs of $n$-subsets, where a stable $n$-subset is one that does not contain any $2$-subset of the form $\{i,i+1\}$ or $\{1,2n+k\}$. The stable Kneser graphs have been an interesting object of study since the late 1970's when A. Schrijver determined that they are a vertex critical class of graphs with chromatic number $k+2$. This article contains a study of the independence complexes of $SG_{n,k}$ for small values of $n$ and $k$. Our contributions are two-fold: first, we prove that the homotopy type of the independence complex of $SG_{2,k}$ is a wedge of spheres of dimension two. Second, we determine the homotopy types of the independence complexes of certain graphs related to $SG_{n,2}$.


2004 ◽  
Vol 20 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Seog-Jin Kim ◽  
Kittikorn Nakprasit

Sign in / Sign up

Export Citation Format

Share Document