scholarly journals Symmetric Polynomials in the Symplectic Alphabet and the Change of Variables $z_j = x_j + x_j^{-1}$

10.37236/9354 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Per Alexandersson ◽  
Luis Angel González-Serrano ◽  
Egor Maximenko ◽  
Mario Alberto Moctezuma-Salazar

Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that\[P(x_1,\ldots,x_n,x_1^{-1},\ldots,x_n^{-1})=Q(x_1+x_1^{-1},\ldots,x_n+x_n^{-1}).\] We denote this polynomial $Q$ by $\Phi_n(P)$ and show that $\Phi_n$ is an epimorphism of algebras. We compute $\Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $\Phi_n(\operatorname{s}_{\lambda/\mu}^{(2n)})$, where $\operatorname{s}_{\lambda/\mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,\ldots,x_n,x^{-1}_1,\ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.

2018 ◽  
Vol 10 (2) ◽  
pp. 395-401
Author(s):  
T.V. Vasylyshyn

$*$-Polynomials are natural generalizations of usual polynomials between complex vector spaces. A $*$-polynomial is a function between complex vector spaces $X$ and $Y,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for nonnegative integers $p$ and $q,$ a $(p,q)$-polynomial is a function between $X$ and $Y,$ which is the restriction to the diagonal of some mapping, acting from the Cartesian power $X^{p+q}$ to $Y,$ which is linear with respect to every of its first $p$ arguments, antilinear with respect to every of its last $q$ arguments and invariant with respect to permutations of its first $p$ arguments and last $q$ arguments separately. In this work we construct formulas for recovering of $(p,q)$-polynomial components of $*$-polynomials, acting between complex vector spaces $X$ and $Y,$ by the values of $*$-polynomials. We use these formulas for investigations of $*$-polynomials, acting from the $n$-dimensional complex vector space $\mathbb{C}^n$ to $\mathbb{C},$ which are symmetric, that is, invariant with respect to permutations of coordinates of its argument. We show that every symmetric $*$-polynomial, acting from $\mathbb{C}^n$ to $\mathbb{C},$ can be represented as an algebraic combination of some "elementary" symmetric $*$-polynomials. Results of the paper can be used for investigations of algebras, generated by symmetric $*$-polynomials, acting from $\mathbb{C}^n$ to $\mathbb{C}.$


2015 ◽  
Vol 98 (112) ◽  
pp. 147-151 ◽  
Author(s):  
Ioan Gavrea ◽  
Mircea Ivan

We obtain a new recurrence formula for sequences of divided differences. In a particular case, the recurrence formula simplifies the classical Newton-Girard identities relating power sums and elementary symmetric polynomials.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Kent D. Boklan

We provide a lightweight algorithm to express each of the elementary symmetric polynomials as a linear combination of (products of) power sum symmetric polynomials and, also, the power sums purely in terms of the elementary symmetric polynomials. Our method does not use Newton’s identities, which give such relations only implicitly. Each identity in the sequence is generated through a single differentiation.


2002 ◽  
Vol 54 (2) ◽  
pp. 239-262 ◽  
Author(s):  
Donald I. Cartwright ◽  
Tim Steger

AbstractWe describe the set of numbers σk(z1,…,zn+1), where z1,…,zn+1 are complex numbers of modulus 1 for which z1z2 … zn+1 = 1, and σk denotes the k-th elementary symmetric polynomial. Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots are of the same modulus. Another application is the calculation of the spectrum of certain adjacency operators arising naturally on a building of type Ãn.


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


Sign in / Sign up

Export Citation Format

Share Document