scholarly journals Commutation Classes of the Reduced Words for the Longest Element of ${\mathfrak S}_n$

10.37236/9481 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Gonçalo Gutierres ◽  
Ricardo Mamede ◽  
José Luis Santos

 Using the standard Coxeter presentation for the symmetric group $\mathfrak{S}_{n}$, two reduced expressions for the same group element $\textsf{w}$ are said to be commutationally equivalent if one expression can be obtained from the other one  by applying a finite sequence of commutations. The commutation classes can be seen as the vertices of a graph $\widehat{G}(\textsf{w})$, where two classes are connected by an edge if elements of those classes differ by a long braid relation. We compute the radius and diameter of the graph $\widehat{G}(\textsf{w}_{\bf 0})$,  for the longest element  $\textsf{w}_{\bf 0}$ in the symmetric group $\mathfrak{S}_{n}$, and show that it is not a planar graph for $n\geq 6$. We also describe a family of commutation classes which contains all atoms, that is classes with one single element, and a subfamily of commutation classes whose elements are in bijection with standard Young tableaux of certain moon-polyomino shapes.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.


10.37236/5967 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Justyna Kosakowska ◽  
Markus Schmidmeier ◽  
Hugh Thomas

In this manuscript we show that two partial orders defined on the set of standard Young tableaux of shape $\alpha$ are equivalent. In fact, we give two proofs for the equivalence of  the box order and the dominance order for tableaux. Both are algorithmic. The first of these proofs emphasizes links to the Bruhat order for the symmetric group and the second provides a more straightforward construction of the cover relations. This work is motivated by the known result that the equivalence of the two combinatorial orders leads to a description of the geometry of the representation space of invariant subspaces of nilpotent linear operators.


10.37236/5885 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Kevin Purbhoo ◽  
Donguk Rhee

We give a bijection between the symmetric group $S_n$, and the set of standard Young tableaux of rectangular shape $m^n$, $m \geq n$, that have order $n$ under jeu de taquin promotion. 


10.37236/1918 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Melnikov

We consider two partial orders on the set of standard Young tableaux. The first one is induced to this set from the weak right order on symmetric group by Robinson-Schensted algorithm. The second one is induced to it from the dominance order on Young diagrams by considering a Young tableau as a chain of Young diagrams. We prove that these two orders of completely different nature coincide on the subset of Young tableaux with 2 columns or with 2 rows. This fact has very interesting geometric implications for orbital varieties of nilpotent order 2 in special linear algebra $sl_n.$


2021 ◽  
Vol 344 (7) ◽  
pp. 112395
Author(s):  
Rosena R.X. Du ◽  
Jingni Yu

2011 ◽  
Vol 63 (6) ◽  
pp. 1238-1253 ◽  
Author(s):  
Daniel Bump ◽  
Maki Nakasuji

AbstractW. Casselman defined a basis fu of Iwahori fixed vectors of a spherical representation of a split semisimple p-adic group G over a nonarchimedean local field F by the condition that it be dual to the intertwining operators, indexed by elements u of the Weyl group W. On the other hand, there is a natural basis , and one seeks to find the transition matrices between the two bases. Thus, let and . Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then , where z are the Langlands parameters for the representation and α runs through the set S(u, v) of positive coroots (the dual root systemof G) such that with rα the reflection corresponding to α. The condition is conjecturally always satisfied if G is simply-laced and the Kazhdan–Lusztig polynomial Pw0v,w0u = 1 with w0 the long Weyl group element. There is a similar formula for conjecturally satisfied if Pu,v = 1. This leads to various combinatorial conjectures.


2019 ◽  
Vol 27 (1) ◽  
pp. 1-13
Author(s):  
Rafał Ziobro

Summary The coexistence of “classical” finite sequences [1] and their zero-based equivalents finite 0-sequences [6] in Mizar has been regarded as a disadvantage. However the suggested replacement of the former type with the latter [5] has not yet been implemented, despite of several advantages of this form, such as the identity of length and domain operators [4]. On the other hand the number of theorems formalized using finite sequence notation is much larger then of those based on finite 0-sequences, so such translation would require quite an effort. The paper addresses this problem with another solution, using the Mizar system [3], [2]. Instead of removing one notation it is possible to introduce operators which would concatenate sequences of various types, and in this way allow utilization of the whole range of formalized theorems. While the operation could replace existing FS2XFS, XFS2FS commands (by using empty sequences as initial elements) its universal notation (independent on sequences that are concatenated to the initial object) allows to “forget” about the type of sequences that are concatenated on further positions, and thus simplify the proofs.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.


10.37236/9168 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Jennifer Morse ◽  
Jianping Pan ◽  
Wencin Poh ◽  
Anne Schilling

We introduce a type $A$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $\star$-crystal. This crystal is a $K$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $\star$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.


10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.


Sign in / Sign up

Export Citation Format

Share Document