scholarly journals The Robinson―Schensted Correspondence and $A_2$-webs

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.

1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Joel Brewster Lewis

International audience We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijections based on generating trees. As special cases, we show that the sets $A_{2n}(1234)$ and $A_{2n}(2143)$ are in bijection with standard Young tableaux of shape $\langle 3^n \rangle$. Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew shape. We show bijectively that the number of standard Young tableaux of shape $\lambda / \mu$ whose reading words avoid $213$ is a natural $\mu$-analogue of the Catalan numbers. Similar results for the patterns $132$, $231$ and $312$. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l'algorithme d'insertion "RSK" et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous montrons que les ensembles $A_{2n}(1234)$ et $A_{2n}(2143)$ sont en bijection avec les tableaux standards de Young de la forme $\langle 3^n \rangle$. Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière section de l'article, nous étudions l'évitement des motifs dans les mots de lecture de skew tableaux généraux. Nous montrons bijectivement que le nombre de tableaux standards de forme $\lambda / \mu$ dont les mots de lecture évitent $213$ est un $\mu$-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs $132$, $231$ et $312$.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales ◽  
Brendon Rhoades

26 pages, 4 figures. v2 has typos fixed, updated references, and a final remarks section including remarks from previous sections International audience We introduce the Tesler polytope $Tes_n(a)$, whose integer points are the Tesler matrices of size n with hook sums $a_1,a_2,...,a_n in Z_{\geq 0}$. We show that $Tes_n(a)$ is a flow polytope and therefore the number of Tesler matrices is counted by the type $A_n$ Kostant partition function evaluated at $(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$. We describe the faces of this polytope in terms of "Tesler tableaux" and characterize when the polytope is simple. We prove that the h-vector of $Tes_n(a)$ when all $a_i>0$ is given by the Mahonian numbers and calculate the volume of $Tes_n(1,1,...,1)$ to be a product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape. On présente le polytope de Tesler $Tes_n(a)$, dont les points réticuilaires sont les matrices de Tesler de taillen avec des sommes des équerres $a_1,a_2,...,a_n in Z_{\geq 0}$. On montre que $Tes_n(a)$ est un polytope de flux. Donc lenombre de matrices de Tesler est donné par la fonction de Kostant de type An évaluée à ($(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$On décrit les faces de ce polytope en termes de “tableaux de Tesler” et on caractérise quand le polytope est simple.On montre que l’h-vecteur de $Tes_n(a)$ , quand tous les $a_i>0$ , est donnée par le nombre de permutations avec unnombre donné d’inversions et on calcule le volume de T$Tes_n(1,1,...,1)$ comme un produit de nombres de Catalanconsécutives multiplié par le nombre de tableaux standard de Young en forme d’escalier


10.37236/5967 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Justyna Kosakowska ◽  
Markus Schmidmeier ◽  
Hugh Thomas

In this manuscript we show that two partial orders defined on the set of standard Young tableaux of shape $\alpha$ are equivalent. In fact, we give two proofs for the equivalence of  the box order and the dominance order for tableaux. Both are algorithmic. The first of these proofs emphasizes links to the Bruhat order for the symmetric group and the second provides a more straightforward construction of the cover relations. This work is motivated by the known result that the equivalence of the two combinatorial orders leads to a description of the geometry of the representation space of invariant subspaces of nilpotent linear operators.


10.37236/7713 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Judith Jagenteufel

Motivated by the direct-sum-decomposition of the $r^{\text{th}}$ tensor power of the defining representation of the special orthogonal group $\mathrm{SO}(2k + 1)$, we present a bijection between vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau for $\mathrm{SO}(3)$.Our bijection preserves a suitably defined descent set. Using it we determine the quasi-symmetric expansion of the Frobenius characters of the isotypic components.On the combinatorial side we obtain a bijection between Riordan paths and standard Young tableaux with 3 rows, all of even length or all of odd length.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jang Soo Kim ◽  
Suho Oh

International audience The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects "Young books'' are introduced and shown to have a connection with the Selberg integral. This connection gives an enumeration formula for Young books. It is shown that special cases of Young books become standard Young tableaux of various shapes: shifted staircases, squares, certain skew shapes, and certain truncated shapes. As a consequence, enumeration formulas for standard Young tableaux of these shapes are obtained. L’intégrale de Selberg est une partie intégrante importante abord évaluée par Selberg en 1944. Stanley a trouvé une interprétation combinatoire de la Selberg aide en permutations. Dans ce papier, de nouveaux objets combinatoires “livres de Young” sont introduits et présentés à avoir un lien avec l’intégrale de Selberg. Cette connexion donne une formule d'énumération pour les livres de Young. Il est démontré que des cas spéciaux de livres de Young deviennent tableaux standards de Young de formes diverses: escaliers décalés, places, certaines formes gauches et certaines formes tronquées. En conséquence, l’énumération des formules pour tableaux standards de Young de ces formes sont obtenues.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Jonah Blasiak

International audience We identify a subalgebra $\widehat{\mathscr{H}}^+_n$ of the extended affine Hecke algebra $\widehat{\mathscr{H}}_n$ of type $A$. The subalgebra $\widehat{\mathscr{H}}^+_n$ is a u-analogue of the monoid algebra of $\mathcal{S}_n ⋉ℤ_≥0^n$ and inherits a canonical basis from that of $\widehat{\mathscr{H}}_n$. We show that its left cells are naturally labeled by tableaux filled with positive integer entries having distinct residues mod $n$, which we term positive affine tableaux (PAT). We then exhibit a cellular subquotient $\mathscr{R}_1^n$ of $\widehat{\mathscr{H}}^+_n$ that is a $u$-analogue of the ring of coinvariants $ℂ[y_1,\ldots,y_n]/(e_1, \ldots,e_n)$ with left cells labeled by PAT that are essentially standard Young tableaux with cocharge labels. Multiplying canonical basis elements by a certain element $*π ∈ \widehat{\mathscr{H}}^+_n$ corresponds to rotations of words, and on cells corresponds to cocyclage. We further show that $\mathscr{R}_1^n$ has cellular quotients $\mathscr{R}_λ$ that are $u$-analogues of the Garsia-Procesi modules $R_λ$ with left cells labeled by (a PAT version of) the $λ$ -catabolizable tableaux. On définit une sous-algèbre $\widehat{\mathscr{H}}^+_n$ de l'extension affine de l'algèbre de Hecke \$\widehat{\mathscr{H}}_n$ de type $A$. La sous-algèbre $\widehat{\mathscr{H}}^+_n$ est $u$-analogue à l'algèbre monoïde de $\mathcal{S}_n ⋉ℤ_≥0^n$ et hérite d'une base canonique de $\widehat{\mathscr{H}}_n$. On montre que ses cellules gauches sont naturellement classées par des tableaux remplis d'entiers naturels ayant chacun des restes différents modulo $n$, que l'on nomme Positive Affine Tableaux (PAT). On montre ensuite qu'un sous-quotient cellulaire $\mathscr{R}_1^n$ de $\widehat{\mathscr{H}}^+_n$ est une $u$-analogue de l'anneau des co-invariants $ℂ[y_1,\ldots,y_n]/(e_1, \ldots,e_n)$ avec des cellules gauches classées PAT qui sont essentiellement des tableaux de Young standards avec des labels cochargés. Multiplier les éléments de la base canonique par un certain élément $π ∈ \widehat{\mathscr{H}}^+_n$ correspond à des rotations de mots, et par rapport aux cellules cela correspond à un cocyclage. Plus loin, on montre que $\mathscr{R}_1^n$ a pour quotients cellulaires $\mathscr{R}_λ$ qui sont $u$- analogues aux modules de Garsia-Procesi $R_λ$ avec des cellules gauches définies par (une version PAT) des tableaux $λ$ -catabolisable.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Susanna Fishel ◽  
Matjaž Konvalinka

International audience Many results involving Schur functions have analogues involving $k-$Schur functions. Standard strong marked tableaux play a role for $k-$Schur functions similar to the role standard Young tableaux play for Schur functions. We discuss results and conjectures toward an analogue of the hook length formula. De nombreux résultats impliquant les fonctions de Schur possèdent des analogues pour les fonctions de k-Schur. Les tableaux standard fortement marqués jouent un rôle pour les fonctions de k-Schur semblable á celui joué par les tableaux de Young pour les fonctions de Schur. Nous proposons ici des résultats et conjectures vers un analogue de la formule des équerres.


10.37236/5885 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Kevin Purbhoo ◽  
Donguk Rhee

We give a bijection between the symmetric group $S_n$, and the set of standard Young tableaux of rectangular shape $m^n$, $m \geq n$, that have order $n$ under jeu de taquin promotion. 


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber

International audience The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a standard Young tableau by exchanging adjacent entries. Recently, Krattenthaler and Müller defined the complexity of this algorithm as the average number of performed exchanges, and Neumann and the author proved it fulfils some nice symmetry properties. In this paper we recall and extend the previous results and provide new bijective proofs.


Sign in / Sign up

Export Citation Format

Share Document