scholarly journals A Crystal on Decreasing Factorizations in the 0-Hecke Monoid

10.37236/9168 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Jennifer Morse ◽  
Jianping Pan ◽  
Wencin Poh ◽  
Anne Schilling

We introduce a type $A$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $\star$-crystal. This crystal is a $K$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $\star$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Gabriel Frieden

International audience We construct a type A(1) n−1 affine geometric crystal structure on the Grassmannian Gr(k, n). The tropicalization of this structure recovers the combinatorics of crystal operators on semistandard Young tableaux of rectangular shape (with n − k rows), including the affine crystal operator e 0. In particular, the promotion operation on these tableaux essentially corresponds to cyclically shifting the Plu ̈cker coordinates of the Grassmannian.


10.37236/9235 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
João Miguel Santos

We compute, mimicking the Lascoux-Schützenberger type A combinatorial procedure, left and right keys for a Kashiwara-Nakashima tableau in type C. These symplectic keys have a similar role as the keys for semistandard Young tableaux. More precisely, our symplectic keys give a tableau criterion for the Bruhat order on the hyperoctahedral group and cosets, and describe Demazure atoms and characters in type C. The right and the left symplectic keys are related through the Lusztig involution. A type C Schützenberger evacuation is defined to realize that involution.


1977 ◽  
Vol 32 (6) ◽  
pp. 619-624 ◽  
Author(s):  
Axel Widera ◽  
Herbert Schäfer

The new intermetallic compound Ba10Al3Ge7 crystallizes hexagonal in a new structure type (a = 974.9(5) pm, c =1647(1) pm, c/a = 1.69, P63/mcm). The Al-atoms, together with the Ge-atoms, form propeller-like Al3Ge7-units.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Michael Chmutov ◽  
Pavlo Pylyavskyy ◽  
Elena Yudovina

International audience In his study of Kazhdan-Lusztig cells in affine type A, Shi has introduced an affine analog of Robinson- Schensted correspondence. We generalize the Matrix-Ball Construction of Viennot and Fulton to give a more combi- natorial realization of Shi's algorithm. As a biproduct, we also give a way to realize the affine correspondence via the usual Robinson-Schensted bumping algorithm. Next, inspired by Honeywill, we extend the algorithm to a bijection between extended affine symmetric group and triples (P, Q, ρ) where P and Q are tabloids and ρ is a dominant weight. The weights ρ get a natural interpretation in terms of the Affine Matrix-Ball Construction. Finally, we prove that fibers of the inverse map possess a Weyl group symmetry, explaining the dominance condition on weights.


1996 ◽  
Vol 271 (50) ◽  
pp. 32212-32216 ◽  
Author(s):  
Michael Sundström ◽  
Dan Hallén ◽  
Anders Svensson ◽  
Elinor Schad ◽  
Mikael Dohlsten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document