scholarly journals Distinguishing Infinite Graphs

10.37236/954 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wilfried Imrich ◽  
Sandi Klavžar ◽  
Vladimir Trofimov

The distinguishing number $D(G)$ of a graph $G$ is the least cardinal number $\aleph$ such that $G$ has a labeling with $\aleph$ labels that is only preserved by the trivial automorphism. We show that the distinguishing number of the countable random graph is two, that tree-like graphs with not more than continuum many vertices have distinguishing number two, and determine the distinguishing number of many classes of infinite Cartesian products. For instance, $D(Q_{n}) = 2$, where $Q_{n}$ is the infinite hypercube of dimension ${n}$.

10.37236/3046 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Simon M. Smith ◽  
Mark E. Watkins

A group of permutations $G$ of a set $V$ is $k$-distinguishable if there exists a partition of $V$ into $k$ cells such that only the identity permutation in $G$ fixes setwise all of the cells of the partition. The least cardinal number $k$ such that $(G,V)$ is $k$-distinguishable is its distinguishing number $D(G,V)$. In particular, a graph $\Gamma$ is $k$-distinguishable if its automorphism group $\rm{Aut}(\Gamma)$ satisfies $D(\rm{Aut}(\Gamma),V\Gamma)\leq k$.Various results in the literature demonstrate that when an infinite graph fails to have some property, then often some finite subgraph is similarly deficient. In this paper we show that whenever an infinite connected graph $\Gamma$ is not $k$-distinguishable (for a given cardinal $k$), then it contains a ball of finite radius whose distinguishing number is at least $k$. Moreover, this lower bound cannot be sharpened, since for any integer $k \geq 3$ there exists an infinite, locally finite, connected graph $\Gamma$ that is not $k$-distinguishable but in which every ball of finite radius is $k$-distinguishable.In the second half of this paper we show that a large distinguishing number for an imprimitive group $G$ is traceable to a high distinguishing number either of a block of imprimitivity or of the induced action by $G$ on the corresponding system of imprimitivity. An immediate application is to automorphism groups of infinite imprimitive graphs. These results are companion to the study of the distinguishing number of infinite primitive groups and graphs in a previous paper by the authors together with T. W. Tucker.


10.37236/292 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
C. Laflamme ◽  
L. Nguyen Van Thé ◽  
N. Sauer

The distinguishing number of a graph $G$ is the smallest positive integer $r$ such that $G$ has a labeling of its vertices with $r$ labels for which there is no non-trivial automorphism of $G$ preserving these labels. In early work, Michael Albertson and Karen Collins computed the distinguishing number for various finite graphs, and more recently Wilfried Imrich, Sandi Klavžar and Vladimir Trofimov computed the distinguishing number of some infinite graphs, showing in particular that the Random Graph has distinguishing number 2. We compute the distinguishing number of various other finite and countable homogeneous structures, including undirected and directed graphs, and posets. We show that this number is in most cases two or infinite, and besides a few exceptions conjecture that this is so for all primitive homogeneous countable structures.


10.37236/3933 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Izak Broere ◽  
Monika Pilśniak

The  distinguishing index $D^\prime(G)$ of a graph $G$ is the least cardinal $d$ such that $G$ has an edge colouring with $d$ colours that is only preserved by the trivial automorphism. This is similar to the notion of the distinguishing number $D(G)$ of a graph $G$, which is defined with respect to vertex colourings.We derive several bounds for infinite graphs, in particular, we prove the general bound $D^\prime(G)\leq\Delta(G)$ for an arbitrary infinite graph. Nonetheless,  the distinguishing index is at most two for many countable graphs, also for the infinite random graph and for uncountable tree-like graphs.We also investigate the concept of the motion of edges and its relationship with the Infinite Motion Lemma. 


2008 ◽  
Vol 29 (4) ◽  
pp. 922-929 ◽  
Author(s):  
Wilfried Imrich ◽  
Janja Jerebic ◽  
Sandi Klavžar

10.37236/3073 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Florian Lehner ◽  
Monika Pilśniak

We introduce the endomorphism distinguishing number $D_e(G)$ of a graph $G$ as the least cardinal $d$ such that $G$ has a vertex coloring with $d$ colors that is only preserved by the trivial endomorphism. This generalizes the notion of the distinguishing number $D(G)$ of a graph $G$, which is defined for automorphisms instead of endomorphisms.As the number of endomorphisms can vastly exceed the number of automorphisms, the new concept opens challenging problems, several of which are presented here. In particular, we investigate relationships between $D_e(G)$ and the endomorphism motion of a graph $G$, that is, the least possible number of vertices moved by a nontrivial endomorphism of $G$. Moreover, we extend numerous results about the distinguishing number of finite and infinite graphs to the endomorphism distinguishing number.


10.37236/2283 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Simon M Smith ◽  
Thomas W Tucker ◽  
Mark E Watkins

The distinguishing number of a group $G$ acting faithfully on a set $V$ is the least number of colors needed to color the elements of $V$ so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph $\Gamma$ is said to have connectivity 1 if there exists a vertex $\alpha \in V\Gamma$ such that $\Gamma \setminus \{\alpha\}$ is not connected. For $\alpha \in V$, an orbit of the point stabilizer $G_\alpha$ is called a suborbit of $G$.We prove that every nonnull, primitive graph with infinite diameter and countably many vertices has distinguishing number $2$. Consequently, any nonnull, infinite, primitive, locally finite graph is $2$-distinguishable; so, too, is any infinite primitive permutation group with finite suborbits. We also show that all denumerable vertex-transitive graphs of connectivity 1 and all Cartesian products of connected denumerable graphs of infinite diameter have distinguishing number $2$. All of our results follow directly from a versatile lemma which we call The Distinct Spheres Lemma.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


2008 ◽  
Vol 30 ◽  
pp. 57-61 ◽  
Author(s):  
Douglas F. Rall ◽  
Boštjan Brešar ◽  
Arthur S. Finbow ◽  
Sandi Klavžar

Sign in / Sign up

Export Citation Format

Share Document