scholarly journals Distinguishability of Infinite Groups and Graphs

10.37236/2283 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Simon M Smith ◽  
Thomas W Tucker ◽  
Mark E Watkins

The distinguishing number of a group $G$ acting faithfully on a set $V$ is the least number of colors needed to color the elements of $V$ so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph $\Gamma$ is said to have connectivity 1 if there exists a vertex $\alpha \in V\Gamma$ such that $\Gamma \setminus \{\alpha\}$ is not connected. For $\alpha \in V$, an orbit of the point stabilizer $G_\alpha$ is called a suborbit of $G$.We prove that every nonnull, primitive graph with infinite diameter and countably many vertices has distinguishing number $2$. Consequently, any nonnull, infinite, primitive, locally finite graph is $2$-distinguishable; so, too, is any infinite primitive permutation group with finite suborbits. We also show that all denumerable vertex-transitive graphs of connectivity 1 and all Cartesian products of connected denumerable graphs of infinite diameter have distinguishing number $2$. All of our results follow directly from a versatile lemma which we call The Distinct Spheres Lemma.


10.37236/7294 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Mark E. Watkins

A graphical Frobenius representation (GFR) of a Frobenius (permutation) group $G$ is a graph $\Gamma$ whose automorphism group Aut$(\Gamma)$ acts as a Frobenius permutation group on the vertex set of $\Gamma$, that is, Aut$(\Gamma)$ acts vertex-transitively with the property that all nonidentity automorphisms fix either exactly one or zero vertices and there are some of each kind. The set $K$ of all fixed-point-free automorphisms together with the identity is called the kernel of $G$. Whenever $G$ is finite, $K$ is a regular normal subgroup of $G$ (F. G. Frobenius, 1901), in which case $\Gamma$ is a Cayley graph of $K$. The same holds true for all the infinite instances presented here.Infinite, locally finite, vertex-transitive graphs can be classified with respect to (i) the cardinality of their set of ends and (ii) their growth rate. We construct families of infinite GFRs for all possible combinations of these two properties. There exist infinitely many GFRs with polynomial growth of degree $d$ for every positive integer $d$, and there exist infinite families of GFRs of exponential growth, both $1$-ended and infinitely-ended, that underlie infinite chiral planar maps. There also exist GFRs of free products of finitely many finitely generated groups. Graphs of connectivity 1 having a Frobenius automorphism group are characterized.



10.37236/4873 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Florian Lehner ◽  
Rögnvaldur G. Möller

A distinguishing colouring of a graph is a colouring of the vertex set such that no non-trivial automorphism preserves the colouring. Tucker conjectured that if every non-trivial automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We show that the requirement of local finiteness is necessary by giving a non-locally finite graph for which no finite number of colours suffices.



1982 ◽  
Vol 34 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Brian Alspach ◽  
T. D. Parsons

A useful general strategy for the construction of interesting families of vertex-transitive graphs is to begin with some family of transitive permutation groups and to construct for each group Γ in the family all graphs G whose vertex–set is the orbit V of Γ and for which Γ ≦ Aut (G), where Aut (G) denotes the automorphism group of G. For example, if we consider the family of cyclic groups 〈(0 1 … n – 1)〉 generated by cycles (0, 1 … n – 1) of length n, then the corresponding graphs are the n-vertex circulant graphs.In this paper we consider transitive permutation groups of degree mn generated by a “rotation” ρ which is a product of m disjoint cycles of length n and by a “twisted translation” t; such that τρτ–l = ρα for some α.



10.37236/3144 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
David E. Roberson

A core of a graph X is a vertex minimal subgraph to which X admits a homomorphism. Hahn and Tardif have shown that for vertex transitive graphs, the size of the core must divide the size of the graph. This motivates the following question: when can the vertex set of a vertex transitive graph be partitioned into sets each of which induce a copy of its core? We show that normal Cayley graphs and vertex transitive graphs with cores half their size always admit such partitions. We also show that the vertex sets of vertex transitive graphs with cores less than half their size do not, in general, have such partitions.



2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.



1991 ◽  
Vol 25 (1) ◽  
pp. 56-59
Author(s):  
Gordon F. Royle


2008 ◽  
Vol 29 (4) ◽  
pp. 922-929 ◽  
Author(s):  
Wilfried Imrich ◽  
Janja Jerebic ◽  
Sandi Klavžar






1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.



Sign in / Sign up

Export Citation Format

Share Document