scholarly journals The Distinguishing Index of Infinite Graphs

10.37236/3933 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Izak Broere ◽  
Monika Pilśniak

The  distinguishing index $D^\prime(G)$ of a graph $G$ is the least cardinal $d$ such that $G$ has an edge colouring with $d$ colours that is only preserved by the trivial automorphism. This is similar to the notion of the distinguishing number $D(G)$ of a graph $G$, which is defined with respect to vertex colourings.We derive several bounds for infinite graphs, in particular, we prove the general bound $D^\prime(G)\leq\Delta(G)$ for an arbitrary infinite graph. Nonetheless,  the distinguishing index is at most two for many countable graphs, also for the infinite random graph and for uncountable tree-like graphs.We also investigate the concept of the motion of edges and its relationship with the Infinite Motion Lemma. 

10.37236/3046 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Simon M. Smith ◽  
Mark E. Watkins

A group of permutations $G$ of a set $V$ is $k$-distinguishable if there exists a partition of $V$ into $k$ cells such that only the identity permutation in $G$ fixes setwise all of the cells of the partition. The least cardinal number $k$ such that $(G,V)$ is $k$-distinguishable is its distinguishing number $D(G,V)$. In particular, a graph $\Gamma$ is $k$-distinguishable if its automorphism group $\rm{Aut}(\Gamma)$ satisfies $D(\rm{Aut}(\Gamma),V\Gamma)\leq k$.Various results in the literature demonstrate that when an infinite graph fails to have some property, then often some finite subgraph is similarly deficient. In this paper we show that whenever an infinite connected graph $\Gamma$ is not $k$-distinguishable (for a given cardinal $k$), then it contains a ball of finite radius whose distinguishing number is at least $k$. Moreover, this lower bound cannot be sharpened, since for any integer $k \geq 3$ there exists an infinite, locally finite, connected graph $\Gamma$ that is not $k$-distinguishable but in which every ball of finite radius is $k$-distinguishable.In the second half of this paper we show that a large distinguishing number for an imprimitive group $G$ is traceable to a high distinguishing number either of a block of imprimitivity or of the induced action by $G$ on the corresponding system of imprimitivity. An immediate application is to automorphism groups of infinite imprimitive graphs. These results are companion to the study of the distinguishing number of infinite primitive groups and graphs in a previous paper by the authors together with T. W. Tucker.


10.37236/954 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wilfried Imrich ◽  
Sandi Klavžar ◽  
Vladimir Trofimov

The distinguishing number $D(G)$ of a graph $G$ is the least cardinal number $\aleph$ such that $G$ has a labeling with $\aleph$ labels that is only preserved by the trivial automorphism. We show that the distinguishing number of the countable random graph is two, that tree-like graphs with not more than continuum many vertices have distinguishing number two, and determine the distinguishing number of many classes of infinite Cartesian products. For instance, $D(Q_{n}) = 2$, where $Q_{n}$ is the infinite hypercube of dimension ${n}$.


10.37236/292 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
C. Laflamme ◽  
L. Nguyen Van Thé ◽  
N. Sauer

The distinguishing number of a graph $G$ is the smallest positive integer $r$ such that $G$ has a labeling of its vertices with $r$ labels for which there is no non-trivial automorphism of $G$ preserving these labels. In early work, Michael Albertson and Karen Collins computed the distinguishing number for various finite graphs, and more recently Wilfried Imrich, Sandi Klavžar and Vladimir Trofimov computed the distinguishing number of some infinite graphs, showing in particular that the Random Graph has distinguishing number 2. We compute the distinguishing number of various other finite and countable homogeneous structures, including undirected and directed graphs, and posets. We show that this number is in most cases two or infinite, and besides a few exceptions conjecture that this is so for all primitive homogeneous countable structures.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


10.37236/771 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Vojtěch Rödl

Let $G^{(\infty)}$ be an infinite graph with the vertex set corresponding to the set of positive integers ${\Bbb N}$. Denote by $G^{(l)}$ a subgraph of $G^{(\infty)}$ which is spanned by the vertices $\{1,\dots,l\}$. As a possible extension of Turán's theorem to infinite graphs, in this paper we will examine how large $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$ can be for an infinite graph $G^{(\infty)}$, which does not contain an increasing path $I_k$ with $k+1$ vertices. We will show that for sufficiently large $k$ there are $I_k$–free infinite graphs with ${1\over 4}+{1\over 200} < \liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$. This disproves a conjecture of J. Czipszer, P. Erdős and A. Hajnal. On the other hand, we will show that $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}\le{1\over 3}$ for any $k$ and such $G^{(\infty)}$.


10.37236/2832 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Henning Bruhn

We relate matroid connectivity to Tutte-connectivity in an infinite graph. Moreover, we show that the two cycle matroids, the finite-cycle matroid and the cycle matroid, in which also infinite cycles are taken into account, have the same connectivity function. As an application we re-prove that, also for infinite graphs, Tutte-connectivity is invariant under taking dual graphs.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


10.37236/3744 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Jakub Przybyło

Let $c:E\to\{1,\ldots,k\}$ be an edge colouring of a connected graph $G=(V,E)$. Each vertex $v$ is endowed with a naturally defined pallet under $c$, understood as the multiset of colours incident with $v$. If $\delta(G)\geq 2$, we obviously (for $k$ large enough) may colour the edges of $G$ so that adjacent vertices are distinguished by their pallets of colours. Suppose then that our coloured graph is examined by a person who is unable to name colours, but perceives if two object placed next to each other are coloured differently. Can we colour $G$ so that this individual can distinguish colour pallets of adjacent vertices? It is proved that if $\delta(G)$ is large enough, then it is possible using just colours 1, 2 and 3. This result is sharp and improves all earlier ones. It also constitutes a strengthening of a result by Addario-Berry, Aldred, Dalal and Reed (2005).


10.37236/9039 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hannah Guggiari ◽  
Alex Scott

For every $n\in\mathbb{N}$ and $k\geqslant2$, it is known that every $k$-edge-colouring of the complete graph on $n$ vertices contains a monochromatic connected component of order at least $\frac{n}{k-1}$. For $k\geqslant3$, it is known that the complete graph can be replaced by a graph $G$ with $\delta(G)\geqslant(1-\varepsilon_k)n$ for some constant $\varepsilon_k$. In this paper, we show that the maximum possible value of $\varepsilon_3$ is $\frac16$. This disproves a conjecture of Gyárfas and Sárközy.


Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Mikhail Lavrov ◽  
Xujun Liu

Abstract A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$ , then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour. Our result is tight in the sense that no longer cycles (of length $>2t+r$ ) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$ -vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$ , in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$ .


Sign in / Sign up

Export Citation Format

Share Document