scholarly journals A Generalization of the Bollobás Set Pairs Inequality

10.37236/9627 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Jason O'Neill ◽  
Jacques Verstraete

The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $n \geqslant k \geqslant t \geqslant 2$, we consider a collection of $k$ families $\mathcal{A}_i: 1 \leq i \leqslant k$ where $\mathcal{A}_i = \{ A_{i,j} \subset [n] : j \in [n] \}$ so that $A_{1, i_1} \cap \cdots \cap A_{k,i_k} \neq \varnothing$ if and only if there are at least $t$ distinct indices $i_1,i_2,\dots,i_k$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $\beta_{k,t}(n)$ of the families with ground set $[n]$.

2014 ◽  
Vol 24 (4) ◽  
pp. 585-608 ◽  
Author(s):  
SHAGNIK DAS ◽  
WENYING GAN ◽  
BENNY SUDAKOV

A central result in extremal set theory is the celebrated theorem of Sperner from 1928, which gives the size of the largest family of subsets of [n] not containing a 2-chain, F1 ⊂ F2. Erdős extended this theorem to determine the largest family without a k-chain, F1 ⊂ F2 ⊂ . . . ⊂ Fk. Erdős and Katona, followed by Kleitman, asked how many chains must appear in families with sizes larger than the corresponding extremal bounds.In 1966, Kleitman resolved this question for 2-chains, showing that the number of such chains is minimized by taking sets as close to the middle level as possible. Moreover, he conjectured the extremal families were the same for k-chains, for all k. In this paper, making the first progress on this problem, we verify Kleitman's conjecture for the families whose size is at most the size of the k + 1 middle levels. We also characterize all extremal configurations.


Author(s):  
Arturo Tozzi

When an edge is removed, a cycle graph Cn becomes a n-1 tree graph. This observation from extremal set theory leads us to the realm of set theory, in which a topological manifold of genus-1 turns out to be of genus-0. Starting from these premises, we prove a theorem suggesting that a manifold with disjoint points must be of genus-0, while a manifold of genus-1 cannot encompass disjoint points.


2009 ◽  
Vol 18 (3) ◽  
pp. 335-355 ◽  
Author(s):  
BEN GREEN ◽  
TERENCE TAO

Using various results from extremal set theory (interpreted in the language of additive combinatorics), we prove an asymptotically sharp version of Freiman's theorem in $\F_2^n$: if $A \subseteq \F_2^n$ is a set for which |A + A| ≤ K|A| then A is contained in a subspace of size $2^{2K + O(\sqrt{K}\log K)}|A|$; except for the $O(\sqrt{K} \log K)$ error, this is best possible. If in addition we assume that A is a downset, then we can also cover A by O(K46) translates of a coordinate subspace of size at most |A|, thereby verifying the so-called polynomial Freiman–Ruzsa conjecture in this case. A common theme in the arguments is the use of compression techniques. These have long been familiar in extremal set theory, but have been used only rarely in the additive combinatorics literature.


Sign in / Sign up

Export Citation Format

Share Document