sperner's theorem
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 187 ◽  
pp. 105558
Author(s):  
Benny Sudakov ◽  
István Tomon ◽  
Adam Zsolt Wagner
Keyword(s):  

Author(s):  
Stepan Tarasenko

In the course of this work the analysis of the proofs of the simple case of the Sperner Theorem was carried out, the approaches to the proof of the complicated case were proposed, the partial cases of multisets were considered, the theorem for these partial cases was proved, the generalized theorem was proved for some partial cases.   (the number of n - element multisets of k - element multiset), developed a small program to graphically show this fact, proved the bimonotonicity of this function. Also, in the course of this work, one of the possible applications of this theorem was considered, namely, the «Procedure for secret distribution», but the applied potential of the theorem does not end there.


2019 ◽  
Vol 29 (2) ◽  
pp. 163-189
Author(s):  
Noga Alon ◽  
Dan Hefetz ◽  
Michael Krivelevich ◽  
Mykhaylo Tyomkyn

AbstractThe inducibility of a graph H measures the maximum number of induced copies of H a large graph G can have. Generalizing this notion, we study how many induced subgraphs of fixed order k and size ℓ a large graph G on n vertices can have. Clearly, this number is $\left( {\matrix{n \cr k}}\right)$ for every n, k and $\ell \in \left\{ {0,\left( {\matrix{k \cr 2}} \right)}\right\}$. We conjecture that for every n, k and $0 \lt \ell \lt \left( {\matrix{k \cr 2}}\right)$ this number is at most $ (1/e + {o_k}(1)) {\left( {\matrix{n \cr k}} \right)}$. If true, this would be tight for ℓ ∈ {1, k − 1}.In support of our ‘Edge-statistics Conjecture’, we prove that the corresponding density is bounded away from 1 by an absolute constant. Furthermore, for various ranges of the values of ℓ we establish stronger bounds. In particular, we prove that for ‘almost all’ pairs (k, ℓ) only a polynomially small fraction of the k-subsets of V(G) have exactly ℓ edges, and prove an upper bound of $ (1/2 + {o_k}(1)){\left( {\matrix{n \cr k}}\right)}$ for ℓ = 1.Our proof methods involve probabilistic tools, such as anti-concentration results relying on fourth moment estimates and Brun’s sieve, as well as graph-theoretic and combinatorial arguments such as Zykov’s symmetrization, Sperner’s theorem and various counting techniques.


2018 ◽  
Vol 28 (1) ◽  
pp. 61-80 ◽  
Author(s):  
A. HAMM ◽  
J. KAHN

Denote by ${\mathcal H}_k$(n, p) the random k-graph in which each k-subset of {1,. . .,n} is present with probability p, independent of other choices. More or less answering a question of Balogh, Bohman and Mubayi, we show: there is a fixed ε > 0 such that if n = 2k + 1 and p > 1 - ε, then w.h.p. (that is, with probability tending to 1 as k → ∞), ${\mathcal H}_k$(n, p) has the ‘Erdős–Ko–Rado property’. We also mention a similar random version of Sperner's theorem.


10.37236/5750 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Lili Mu ◽  
Yi Wang

Let $[n]=\{1,2,\ldots,n\}$ and $\mathscr{B}_n=\{A: A\subseteq [n]\}$. A family $\mathscr{A}\subseteq \mathscr{B}_n$ is a Sperner family if $A\nsubseteq B$ and $B\nsubseteq A$ for distinct $A,B\in\mathscr{A}$. Sperner's theorem states that the density of the largest Sperner family in $\mathscr{B}_n$ is $\binom{n}{\left\lceil{n/2}\right\rceil}/2^n$. The objective of this note is to show that the same holds if $\mathscr{B}_n$ is replaced by compressed ideals over $[n]$.


2015 ◽  
Vol 25 (4) ◽  
pp. 633-640
Author(s):  
HUNTER SPINK

How many strict local maxima can a real quadratic function on {0, 1}n have? Holzman conjectured a maximum of $\binom{n }{ \lfloor n/2 \rfloor}$. The aim of this paper is to prove this conjecture. Our approach is via a generalization of Sperner's theorem that may be of independent interest.


2014 ◽  
Vol 24 (4) ◽  
pp. 585-608 ◽  
Author(s):  
SHAGNIK DAS ◽  
WENYING GAN ◽  
BENNY SUDAKOV

A central result in extremal set theory is the celebrated theorem of Sperner from 1928, which gives the size of the largest family of subsets of [n] not containing a 2-chain, F1 ⊂ F2. Erdős extended this theorem to determine the largest family without a k-chain, F1 ⊂ F2 ⊂ . . . ⊂ Fk. Erdős and Katona, followed by Kleitman, asked how many chains must appear in families with sizes larger than the corresponding extremal bounds.In 1966, Kleitman resolved this question for 2-chains, showing that the number of such chains is minimized by taking sets as close to the middle level as possible. Moreover, he conjectured the extremal families were the same for k-chains, for all k. In this paper, making the first progress on this problem, we verify Kleitman's conjecture for the families whose size is at most the size of the k + 1 middle levels. We also characterize all extremal configurations.


Sign in / Sign up

Export Citation Format

Share Document