scholarly journals Advances on molecular mechanisms of plant-pathogen interactions

2012 ◽  
Vol 34 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Xi CHENG ◽  
Cai-Juan TIAN ◽  
Ai-Ning LI ◽  
Jin-Long QIU
2019 ◽  
Vol 109 (12) ◽  
pp. 2009-2021 ◽  
Author(s):  
Yongxia Li ◽  
Yuqian Feng ◽  
Quan Lü ◽  
Donghui Yan ◽  
Zhenyu Liu ◽  
...  

Poplar are important forestry species in China, but the Botryosphaeria dothidea pathogen causes serious economic losses worldwide. To identify candidate B. dothidea resistance proteins and explore the molecular mechanisms involved in poplar–pathogen interactions, proteomic responses of stem samples from resistant and susceptible poplar ecotypes to B. dothidea were investigated using nanoflow liquid chromatography-tandem mass spectrometry with label-free quantitative analysis. We identified 588 proteins, divided into 21 biological process categories including 48 oxidoreductases, 72 hydrolytic enzymes, 80 metabolic enzymes, and 29 proteins of unknown function. Differential proteome analysis revealed large differences between resistant Populus tomentosa Carr and susceptible Populus beijingensis Hsu ecotypes before and after inoculation. Among 102 identified proteins, 22 were highly upregulated in the resistant genotype but downregulated in the susceptible genotype. Proteins induced in P. tomentosa Carr in response to B. dothidea are associated with plant defenses including oxidoreductase activity (catalase, isocitrate dehydrogenase, and superoxide dismutase), phenylpropanoid biosynthesis and phenylalanine metabolism (alcohol dehydrogenase), photosynthesis (ATP synthase subunit alpha, ATP synthase gamma chain, photosystem I P700 chlorophyll a apoprotein A2, photosystem II CP47 chlorophyll apoprotein), carbon fixation (pyruvate kinase, triosephosphate isomerase, malic enzyme, phosphoglycerate kinase, ribulose-1,5-bisphosphate carboxylase, and ribulose bisphosphate carboxylase small chain), and glycolysis/gluconeogenesis (fructose-bisphosphate aldolase). Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 168 proteins related to metabolic pathways, 41 proteins related to the biosynthesis of phenylpropanoids, and 36 proteins related to the biosynthesis of plant hormones, the biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid, and photosynthesis in response to B. dothidea. Our findings provide insight into plant–pathogen interactions in resistant and susceptible poplar ecotypes infected with B. dothidea and could assist the development of novel strategies for fighting poplar canker disease.


2021 ◽  
Author(s):  
Richard Breia ◽  
Artur Conde ◽  
Hélder Badim ◽  
Ana Margarida Fortes ◽  
Hernâni Gerós ◽  
...  

Abstract Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant–pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant–pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant–pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.


2021 ◽  
Author(s):  
S.M. Brouwer ◽  
P. Lindqvist‐Reis ◽  
D. Pergament Persson ◽  
S. Marttila ◽  
L.J. Grenville‐Briggs ◽  
...  

2021 ◽  
Vol 63 ◽  
pp. 102061
Author(s):  
James M. Elmore ◽  
Brianna D. Griffin ◽  
Justin W. Walley

Sign in / Sign up

Export Citation Format

Share Document