scholarly journals Comparative Proteomic Analysis of Plant–Pathogen Interactions in Resistant and Susceptible Poplar Ecotypes Infected with Botryosphaeria dothidea

2019 ◽  
Vol 109 (12) ◽  
pp. 2009-2021 ◽  
Author(s):  
Yongxia Li ◽  
Yuqian Feng ◽  
Quan Lü ◽  
Donghui Yan ◽  
Zhenyu Liu ◽  
...  

Poplar are important forestry species in China, but the Botryosphaeria dothidea pathogen causes serious economic losses worldwide. To identify candidate B. dothidea resistance proteins and explore the molecular mechanisms involved in poplar–pathogen interactions, proteomic responses of stem samples from resistant and susceptible poplar ecotypes to B. dothidea were investigated using nanoflow liquid chromatography-tandem mass spectrometry with label-free quantitative analysis. We identified 588 proteins, divided into 21 biological process categories including 48 oxidoreductases, 72 hydrolytic enzymes, 80 metabolic enzymes, and 29 proteins of unknown function. Differential proteome analysis revealed large differences between resistant Populus tomentosa Carr and susceptible Populus beijingensis Hsu ecotypes before and after inoculation. Among 102 identified proteins, 22 were highly upregulated in the resistant genotype but downregulated in the susceptible genotype. Proteins induced in P. tomentosa Carr in response to B. dothidea are associated with plant defenses including oxidoreductase activity (catalase, isocitrate dehydrogenase, and superoxide dismutase), phenylpropanoid biosynthesis and phenylalanine metabolism (alcohol dehydrogenase), photosynthesis (ATP synthase subunit alpha, ATP synthase gamma chain, photosystem I P700 chlorophyll a apoprotein A2, photosystem II CP47 chlorophyll apoprotein), carbon fixation (pyruvate kinase, triosephosphate isomerase, malic enzyme, phosphoglycerate kinase, ribulose-1,5-bisphosphate carboxylase, and ribulose bisphosphate carboxylase small chain), and glycolysis/gluconeogenesis (fructose-bisphosphate aldolase). Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 168 proteins related to metabolic pathways, 41 proteins related to the biosynthesis of phenylpropanoids, and 36 proteins related to the biosynthesis of plant hormones, the biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid, and photosynthesis in response to B. dothidea. Our findings provide insight into plant–pathogen interactions in resistant and susceptible poplar ecotypes infected with B. dothidea and could assist the development of novel strategies for fighting poplar canker disease.

2019 ◽  
Author(s):  
Paula Maria Moreira Martins ◽  
Andre da Silva Xavier ◽  
Marco Aurelio Takita ◽  
Poliane Alfemas-Zerbini ◽  
Alessandra Alves de Souza

AbstractXanthomonas is one of the most important bacterial genera of plant pathogens causing economic losses in crop production worldwide. Despite its importance, many aspects of basic Xanthomonas biology remain unknown or understudied. Here, we present the first genus-wide analysis of CRISPR-Cas in Xanthomonas and describe specific aspects of its occurrence. Our results show that Xanthomonas genomes harbour subtype I-C and I-F CRISPR-Cas systems and that species belonging to distantly Xanthomonas-related genera in Xanthomonadaceae exhibit the same configuration of coexistence of the I-C and I-F CRISPR subtypes. Additionally, phylogenetic analysis using Cas proteins indicated that the CRISPR systems present in Xanthomonas spp. are the result of an ancient acquisition. Despite the close phylogeny of these systems, they present significant variation in both the number and targets of spacers. An interesting characteristic observed in this study was that the identified plasmid-targeting spacers were always driven toward plasmids found in other Xanthomonas strains, indicating that CRISPR-Cas systems could be very effective in coping with plasmidial infections. Since many effectors are plasmid encoded, CRISPR-Cas might be driving specific characteristics of plant-pathogen interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Xu ◽  
Qian Meng ◽  
Xiaodong Suo ◽  
Yonghong Xie ◽  
Yueqing Cheng ◽  
...  

AbstractChinese prickly ash (Zanthoxylum) is extensively used as spice and traditional medicine in eastern Asian countries. Recently, an emergent yellow-flower disease (YFD) break out in green Chinese prickly ash (Zanthoxylum schinifolium, Qinghuajiao in Chinese) at Chongqing municipality, and then leads to a sharp reduction in the yield of Qinghuajiao, and thus results in great economic losses for farmers. To address the molecular response for the emergent YFD of Qinghuajiao, we analyzed the transcriptome of 12 samples including the leaves and inflorescences of asymptomatic and symptomatic plants from three different towns at Chongqing by high-throughput RNA-Seq technique. A total of 126,550 genes and 229,643 transcripts were obtained, and 21,054 unigenes were expressed in all 12 samples. There were 56 and 164 different expressed genes (DEGs) for the AL_vs_SL (asymptomatic leaf vs symptomatic leaf) and AF_vs_SF (asymptomatic flower vs symptomatic flower) groups, respectively. The results of KEGG analysis showed that the “phenylpropanoid biosynthesis” pathway that related to plant–pathogen interaction were found in AL_vs_SL and AF_vs_SF groups, and the “Plant–pathogen interaction” found in AF_vs_SF group, implying that this Qinghuajiao YFD might cause by plant pathogen. Interestingly, we detected 33 common unigenes for the 2 groups, and almost these unigenes were up-regulated in the symptomatic plants. Moreover, most of which were homologs to virus RNA, the components of viruses, implying that this YFD was related to virus. Our results provided a primary molecular basis for the prevention and treatment of YFD of Qinghuajiao trees.


2012 ◽  
Vol 34 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Xi CHENG ◽  
Cai-Juan TIAN ◽  
Ai-Ning LI ◽  
Jin-Long QIU

2020 ◽  
Vol 8 (3) ◽  
pp. 449 ◽  
Author(s):  
Yulin Cheng ◽  
Yunlong Lin ◽  
Haohao Cao ◽  
Zhengguo Li

As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant–pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit–pathogen interactions remaining relatively unexplored compared with well-studied leaf–pathogen interactions, progress has occurred in the citrus fruit–Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Huang ◽  
Cuicui Sun ◽  
Xiangnan Guan ◽  
Sen Lian ◽  
Baohua Li ◽  
...  

Apple ring rot caused by Botryosphaeria dothidea is an important disease in China, which leads to serious economic losses during storage. Plant activators are compounds that induce resistance against pathogen infection and are considered as a promising alternative strategy to traditional chemical treatment. In the present study, butylated hydroxytoluene (BHT), a potential plant activator, was evaluated for its induced resistance against B. dothidea in postharvest apple fruits. The physiological and molecular mechanisms involved in induced resistance were also explored. The results showed that BHT treatment could trigger strong resistance in apple fruits against B. dothidea, and the optimum concentration was 200 μmol L–1 by immersion of fruits. BHT treatment significantly increased the activities of four defensive enzymes and alleviated lipid peroxidation by increasing antioxidant enzyme activities. In addition, salicylic acid (SA) content was enhanced by BHT treatment as well as the expression of three SA biosynthesis-related genes (MdSID2, MdPAD4, and MdEDS1) and two defense genes (MdPR1 and MdPR5). Our results suggest that BHT-conferred resistance against B. dothidea might be mainly through increasing the activities of defense-related enzymes and activating SA signaling pathway, which may provide an alternative strategy to control apple ring rot in postharvest fruits.


2019 ◽  
Vol 3 (1) ◽  
pp. 129-137
Author(s):  
Gbadebo E . Adeleke ◽  
Olaniyi T. Adedosu ◽  
Rachael O. Adeyi ◽  
John O. Fatoki

Background: Many plants have been identified for their insecticidal properties as alternatives to synthetic ones, which are toxic to untargeted organisms and environment. Ricinus communis (Castor) has been re-ported to exhibit insecticidal properties against insect pests. Zonocerus variegatus (Grasshopper) is a notable pest of several crops, and has been linked with great economic losses to farmers. The present study investigates the in-vitro toxicity of R. communis seed kernel extract (RCSKE) on the activities of selected antioxidant and hydrolytic enzymes in nymph and adult Zonocerus variegatus (Grasshopper), using cypermethrin (CYPER-M) and chlorpyrifos (CPF) as standard conventional pesticides. Methods: Seed kernel of Ricinus communis (Castor) was subjected to acidified aqueous extraction to obtain the extract (RCSKE). Crude enzyme preparations were obtained from nymph and adult Z. variegatus grass-hoppers. The in-vitro effects of different concentrations (15, 30, 45, 60, 75, 90 and 105μg/ml) each of RCSKE, CYPER-M and CPF on the activities of superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) and carboxylesterase (CES) in crude enzyme preparations were estimated spectrophotometrically. The level of statistical significance was 0.05. Results: The RCSKE significantly reduced the in-vitro SOD activity (p < 0.05) in nymph Z. variegatus at all the concentrations, whereas both CYPER-M and CPF significantly reduced the activity only at certain concentrations. The CAT activity in the nymph was significantly decreased by RCSKE and CPF at all the concentrations, but CYPER-M decreased it only at certain concentrations. In adult Z. variegatus, SOD activity was not significantly affected (p > 0.05), while CAT activity was significantly increased (p < 0.05) by the three agents at all the concentrations. The AChE and CES activities in the nymph were significantly reduced by RCSKE, CYPER-M and CPF at all the concentrations. The RCSKE and CPF significantly increased the CES activity, while CYPER-M caused a significant decrease in the activity in adult Z. variegatus. Conclusion: The seed kernel extract of Ricinus communis is an effective pesticidal agent and hence, it could be a source of biopesticide alternative with greater potential than cypermethrin and chlorpyrifos. In addition, the antioxidant, acetylcholinesterase and carboxylesterase enzymes in the nymphs of Z. variegatus grasshoppers are more susceptible to the effect of the extract than in the adult grasshoppers.


Sign in / Sign up

Export Citation Format

Share Document