3D Printing Path Planning of Fractal Models

2018 ◽  
Vol 30 (6) ◽  
pp. 1123
Author(s):  
Xiaoya Zhai ◽  
Falai Chen
Author(s):  
Zhengkai Wu ◽  
Thomas M. Tucker ◽  
Chandra Nath ◽  
Thomas R. Kurfess ◽  
Richard W. Vuduc

In this paper, both software model visualization with path simulation and associated machining product are produced based on the step ring based 3-axis path planning to demo model-driven graphics processing unit (GPU) feature in tool path planning and 3D image model classification by GPU simulation. Subtractive 3D printing (i.e., 3D machining) is represented as integration between 3D printing modeling and CNC machining via GPU simulated software. Path planning is applied through material surface removal visualization in high resolution and 3D path simulation via ring selective path planning based on accessibility of path through pattern selection. First, the step ring selects critical features to reconstruct computer aided design (CAD) design model as STL (stereolithography) voxel, and then local optimization is attained within interested ring area for time and energy saving of GPU volume generation as compared to global all automatic path planning with longer latency. The reconstructed CAD model comes from an original sample (GATech buzz) with 2D image information. CAD model for optimization and validation is adopted to sustain manufacturing reproduction based on system simulation feedback. To avoid collision with the produced path from retraction path, we pick adaptive ring path generation and prediction in each planning iteration, which may also minimize material removal. Moreover, we did partition analysis and g-code optimization for large scale model and high density volume data. Image classification and grid analysis based on adaptive 3D tree depth are proposed for multi-level set partition of the model to define no cutting zones. After that, accessibility map is computed based on accessibility space for rotational angular space of path orientation to compare step ring based pass planning verses global all path planning. Feature analysis via central processing unit (CPU) or GPU processor for GPU map computation contributes to high performance computing and cloud computing potential through parallel computing application of subtractive 3D printing in the future.


2019 ◽  
Vol 2 (22) ◽  
pp. 183-194
Author(s):  
Ewelina Małek ◽  
Danuta Miedzińska ◽  
Arkadiusz Popławski ◽  
Wiesław Szymczyk

In the field of numerical research there are various approaches and methods for structures of porous materials modeling. The solution is the use of fractal models to develop the porous structure. In the case of modeling the geometry of natural (random) materials, there is a problem of compatibility of the FE model geometry and real one. This is a source of differences between the results of calculations and experimental ones. Application of 3D printing technology will allow to receive a real structure in a controlled manner, which exactly reflects the designed structure and is consistent with the geometry of the numerical model. An experimental research on the standard samples made of photopolymer resin using 3D printing technique was presented in the paper. The aim of the research was to determine the base material properties and, consequently, to select the constitutive model, which is necessary to carry out numerical analyses.


2021 ◽  
Author(s):  
Huishu Yin ◽  
Shengfa Wang ◽  
Yi Wang ◽  
Fengqi Li ◽  
Linlin Tian ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 327-334
Author(s):  
Min Yang ◽  
Menggang Lai ◽  
Shengjun Liu

Abstract With the popularity of stereo printing technology, 3D printers are widely used in industry, manufacturing, medicine, and other industries to quickly manufacture small devices. Before 3D printing, it is necessary to plan the printing path. Unreasonable printing path will not only increase the time consumption of printing products, but also cause printing failure due to the accumulation of stress and deformation in the printing process. In order to overcome the superimposed stress and deformation in the process of printing thin-walled complex devices, this article introduces the idea of balanced stress based on the basic damage of the path planning based on the potential field method. In the printing process, the ring path, island path and cross path are added to overcome the stress deformation phenomenon and improve the printing quality. Finally, the 3D printer is used to manufacture thin-walled complex devices, and the feasibility of the balanced potential field method is verified by physical comparison.


Author(s):  
Ting Wang ◽  
Nanya Li ◽  
Guido Link ◽  
John Jelonnek ◽  
Jürgen Fleischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document