The Lower Bounds on the Second Order Nonlinearity of Bent Functions and Semi-bent Functions

2010 ◽  
Vol 32 (10) ◽  
pp. 2521-2525
Author(s):  
Xue-lian Li ◽  
Yu-pu Hu ◽  
Jun-tao Gao
2012 ◽  
Vol 35 (8) ◽  
pp. 1588 ◽  
Author(s):  
Chun-Lei LI ◽  
Huan-Guo ZHANG ◽  
Xiang-Yong ZENG ◽  
Lei HU

2019 ◽  
Vol 12 (1) ◽  
pp. 77-83
Author(s):  
Deng Tang ◽  
Haode Yan ◽  
Zhengchun Zhou ◽  
Xiaosong Zhang

2011 ◽  
Vol 22 (06) ◽  
pp. 1331-1349 ◽  
Author(s):  
XUELIAN LI ◽  
YUPU HU ◽  
JUNTAO GAO

It is a difficult task to compute the r-th order nonlinearity of a given function with algebraic degree strictly greater than r > 1. Though lower bounds on the second order nonlinearity are known only for a few particular functions, the majority of which are cubic. We investigate lower bounds on the second order nonlinearity of cubic Boolean functions [Formula: see text], where [Formula: see text], dl = 2il + 2jl + 1, m, il and jl are positive integers, n > il > jl. Furthermore, for a class of Boolean functions [Formula: see text] we deduce a tighter lower bound on the second order nonlinearity of the functions, where [Formula: see text], dl = 2ilγ + 2jlγ + 1, il > jl and γ ≠ 1 is a positive integer such that gcd(n,γ) = 1. Lower bounds on the second order nonlinearity of cubic monomial Boolean functions, represented by fμ(x) = Tr(μx2i+2j+1), [Formula: see text], i and j are positive integers such that i > j, were obtained by Gode and Gangopadhvay in 2009. In this paper, we first extend the results of Gode and Gangopadhvay from monomial Boolean functions to Boolean functions with more trace terms. We further generalize and improve the results to a wider range of n. Our bounds are better than those of Gode and Gangopadhvay for monomial functions fμ(x). Especially, our lower bounds on the second order nonlinearity of some Boolean functions F(x) are better than the existing ones.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


Sign in / Sign up

Export Citation Format

Share Document